【題目】如圖,在正方體ABCD﹣A1B1C1D1中,E為DD1的中點(diǎn).求證:
(1)BD1∥平面EAC;
(2)平面EAC⊥平面AB1C.
【答案】
(1)證明:連接BD,交AC于O.連接EO,BD1.
因?yàn)镋為DD1的中點(diǎn),所以BD1∥OE.)
又OE平面EAC,BD1平面EAC,
所以BD1∥平面EAC
(2)證明:∵BB1⊥AC,BD⊥AC.BB1∩BD=B,BB1、BD在面BB1D1D 內(nèi)
∴AC⊥平面BB1D1D
又BD1平面BB1D1D∴BD1⊥AC.
同理BD1⊥AB1,∴BD1⊥平面AB1C.
由(1)得BD1∥OE,∴EO⊥平面AB1C.
又EO平面EAC,∴平面EAC⊥平面AB1C
【解析】(1)連接BD,交AC于O.連接EO,BD1 . 根據(jù)中位線可知BD1∥OE,又OE平面EAC,BD1平面EAC,根據(jù)線面平行的判定定理可知BD1∥平面EAC;(2)根據(jù)BB1⊥AC,BD⊥AC,BB1∩BD=B,滿足線面垂直的判定定理,則AC⊥平面BB1D1D,又BD1平面BB1D1D則BD1⊥AC,同理BD1⊥AB1 , 從而BD1⊥平面AB1C.根據(jù)(1)可得BD1∥OE,從而EO⊥平面AB1C,又EO平面EAC,根據(jù)面面垂直的判定定理可知平面EAC⊥平面AB1C.
【考點(diǎn)精析】掌握直線與平面平行的判定和平面與平面垂直的性質(zhì)是解答本題的根本,需要知道平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行;兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解籃球愛好者小張的投籃命中率與打籃球時(shí)間之間的關(guān)系,下表記錄了小張某月1號(hào)到5號(hào)每天打籃球時(shí)間(單位:小時(shí))與當(dāng)天投籃命中率之間的關(guān)系:
時(shí)間 | 1 | 2 | 3 | 4 | 5 |
命中率 | 0.4 | 0.5 | 0.6 | 0.6 | 0.4 |
(1)求小張這天的平均投籃命中率;
(2)利用所給數(shù)據(jù)求小張每天打籃球時(shí)間(單位:小時(shí))與當(dāng)天投籃命中率之間的線性回歸方程;(參考公式:)
(3)用線性回歸分析的方法,預(yù)測(cè)小李該月號(hào)打小時(shí)籃球的投籃命中率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C在以AB為直徑的圓O上,PA垂直于圓O所在的平面,G為△AOC的重心.
(1)求證:平面OPG⊥平面PAC;
(2)若PA=AB=2AC=2,求二面角A﹣OP﹣G的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的離心率為 ,左右焦點(diǎn)分別為F1 , F2 , 以橢圓短軸為直徑的圓與直線 相切.
(Ⅰ)求橢圓E的方程;
(Ⅱ)過點(diǎn)F1、斜率為k1的直線l1與橢圓E交于A,B兩點(diǎn),過點(diǎn)F2、斜率為k2的直線l2與橢圓E交于C,D兩點(diǎn),且直線l1 , l2相交于點(diǎn)P,若直線OA,OB,OC,OD的斜率kOA , kOB , kOC , kOD滿足kOA+kOB=kOC+kOD , 求證:動(dòng)點(diǎn)P在定橢圓上,并求出此橢圓方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三點(diǎn)A(1,﹣1),B(3,0),C(2,1),P為平面ABC上的一點(diǎn), =λ +μ ,且 =0, =3.
(1)求 ;
(2)求λ+μ 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】先閱讀下列題目的證法,再解決后面的問題.
已知a1,a2∈R,且a1+a2=1,求證:a+a≥.
證明:構(gòu)造函數(shù)f(x)=(x-a1)2+(x-a2)2,則f(x)=2x2-2(a1+a2)x+a+a=2x2-2x+a+a.
因?yàn)閷?duì)一切x∈R,恒有f(x)≥0,
所以Δ=4-8(a+a)≤0,從而得a+a≥.
(1)若a1,a2,…,an∈R,a1+a2+…+an=1,請(qǐng)由上述結(jié)論寫出關(guān)于a1,a2,…,an的推廣式;
(2)參考上述證法,請(qǐng)對(duì)你推廣的結(jié)論加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}的公差d>0,且a1a6=11,a3+a4=12.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{ }的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)為調(diào)查來(lái)自南方和北方的同齡大學(xué)生的身高差異,從2016級(jí)的年齡在18~19歲之間的大學(xué)生中隨機(jī)抽取了來(lái)自南方和北方的大學(xué)生各10名,測(cè)量他們的身高,量出的身高如下(單位:cm):
南方:158,170,166,169,180,175,171,176,162,163.
北方:183,173,169,163,179,171,157,175,184,166.
(1)根據(jù)抽測(cè)結(jié)果,畫出莖葉圖,對(duì)來(lái)自南方和北方的大學(xué)生的身高作比較,寫出統(tǒng)計(jì)結(jié)論.
(2)設(shè)抽測(cè)的10名南方大學(xué)生的平均身高為x cm,將10名南方大學(xué)生的身高依次輸入如圖所示的程序框圖進(jìn)行運(yùn)算,問輸出的s大小為多少?并說(shuō)明s的統(tǒng)計(jì)學(xué)意義.
(3)為進(jìn)一步調(diào)查身高與生活習(xí)慣的關(guān)系,現(xiàn)從來(lái)自南方的這10名大學(xué)生中隨機(jī)抽取2名身高不低于170 cm的學(xué)生,求身高為176 cm的學(xué)生被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】冶煉某種金屬可以用舊設(shè)備和改造后的新設(shè)備,為了檢驗(yàn)用這兩種設(shè)備生產(chǎn)的產(chǎn)品中所含雜質(zhì)的關(guān)系,調(diào)查結(jié)果如下表所示:
分類 | 雜質(zhì)高 | 雜質(zhì)低 |
舊設(shè)備 | 37 | 121 |
新設(shè)備 | 22 | 202 |
根據(jù)以上數(shù)據(jù),則( )
A. 含雜質(zhì)的高低與設(shè)備改造有關(guān)
B. 含雜質(zhì)的高低與設(shè)備改造無(wú)關(guān)
C. 設(shè)備是否改造決定含雜質(zhì)的高低
D. 以上答案都不對(duì)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com