15.已知f(x)=$\frac{{2}^{x}}{2(ln2-1)x}$,則f′(1)=1.

分析 先求導(dǎo),再代值計(jì)算即可.

解答 解:f′(x)=$\frac{{x•2}^{x}ln2-{2}^{x}}{2(ln2-1){x}^{2}}$,
∴f′(1)=$\frac{2ln2-2}{2(ln2-1)}$=1,
故答案為:1

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的運(yùn)算法則,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.命題p:若1<y<x,0<a<1,則 ${a^{\frac{1}{x}}}<{a^{\frac{1}{y}}}$,命題q:若1<y<x,a<0,則xa<ya.在命題①p且q②p或q③非p④非q中,真命題是( 。
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.執(zhí)行如圖所示程序框圖,若輸出的S=-46,則①處填入的條件可以是(  )
A.k<4?B.k<5?C.k>4?D.k>5?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.用數(shù)字1,2,3,4,5可以組成沒(méi)有重復(fù)數(shù)字,并且比20000大的五位偶數(shù)共有36個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知數(shù)列{an}中,a1=1,an+1=$\frac{2(n+1){a}_{n}}{n}$+n+1.
(I)求證:數(shù)列{$\frac{{a}_{n}}{n}$+1}是等比教列.
(II)求數(shù)列{an}的前n項(xiàng)和為Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.我國(guó)古代名著《九章算術(shù)》用“更相減損術(shù)”求兩個(gè)正整數(shù)的最大公約數(shù)是一個(gè)偉大創(chuàng)舉.這個(gè)偉大創(chuàng)舉與我國(guó)古老的算法-“輾轉(zhuǎn)相除法”實(shí)質(zhì)一樣.如圖的程序框圖即源于“輾轉(zhuǎn)相除法”,當(dāng)輸入a=3051,b=1008時(shí),輸出的a=(  )
A.6B.9C.12D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.為研究男女同學(xué)空間想象能力的差異,孫老師從高一年級(jí)隨機(jī)選取了20名男生、20名女生,進(jìn)行空間圖形識(shí)別測(cè)試,得到成績(jī)莖葉圖如下,假定成績(jī)大于等于80分的同學(xué)為“空間想象能力突出”,低于80分的同學(xué)為“空間想象能力正!保
(1)完成下面2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“空間想象能力突出”與性別有關(guān);
空間想象能力突出空間想象能力正常合計(jì)
男生
女生
合計(jì)
(2)從“空間想象能力突出”的同學(xué)中隨機(jī)選取男生2名、女生2名,記其中成績(jī)超過(guò)90分的人數(shù)為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.
下面公式及臨界值表僅供參考:${X^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(X2≥k)0.1000.0500.010
k2.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖,四邊形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分別找一點(diǎn)M、N,使△AMN周長(zhǎng)最小時(shí),則∠AMN+∠ANM的度數(shù)為( 。
A.140°B.130°C.120°D.110°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.某地為增強(qiáng)居民的傳統(tǒng)文化意識(shí),活躍節(jié)日氛圍,在元宵節(jié)舉辦了猜燈謎比賽,現(xiàn)從參加比賽的選手中隨機(jī)抽取200名后按年齡分組:第1組[20,25),第2組[25,30),第3組[30,35),第4組[35,40),第5組[40,45),得到的頻率分布直方圖如圖所示.
(1)若從第3,4,5組中用分層抽樣的方法抽取12名選手參加傳統(tǒng)知識(shí)問(wèn)答比賽,則應(yīng)從第3,4,5組各抽取多少名選手?
(2)在(1)的條件下,該地決定在第4,5組的選手中隨機(jī)抽取2名選手介紹比賽感想,求第5組至少有一名選手被抽中的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案