已知函數(shù)y=x+
a
x
旦(a>0)有如下的性質:在區(qū)間(0,
a
]上單調遞減,在[
a
,+∞)上單調遞增.
(1)如果函數(shù)f(x)=x+
2b
x
在(0,4]上單調遞減,在[4,+∞)上單調遞增,求常數(shù)b的值.
(2)設常數(shù)a∈[l,4],求函數(shù)y=x+
a
x
在x∈[l,2]的最大值.
分析:(1)由所給性質求得函數(shù)y=x+
a
x
的單調區(qū)間,對比所給單調區(qū)間,即可得到方程,解出即可;
(2)根據(jù)性質求出函數(shù)單調區(qū)間,由a的范圍知函數(shù)y=x+
a
x
在x∈[l,2]的最大值只能在端點處取得,討論函數(shù)端點處函數(shù)值的大小即可得到答案.
解答:解:(1)由性質知,函數(shù)在(0,
2b
]上是單調遞減,在[
2b
,+∞)上單調遞增,
2b
=4,解得b=4.
(2)由性質知,函數(shù)在(0,
a
]上單調遞減,在[
a
,+∞)上單調遞增,
∵a∈[1,4],∴函數(shù)y=x+
a
x
在x∈[l,2]的最大值只能在端點處取得,
當x=1時,y=1+a,當x=2時,y=2+
a
2

令1+a≤2+
a
2
,得a≤2,
∴ymax=
2+
a
2
,(1≤a≤2)
1+a,(2<a≤4)
點評:本題考查函數(shù)單調性的性質,考查學生運用所學知識分析解決新問題的能力,屬中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=x+
a
x
有如下性質:如果常數(shù)a>0,那么該函數(shù)在(0,
a
]上是減函數(shù),在[
a
,+∞)上是增函數(shù).
(Ⅰ)如果函數(shù)y=x+
2b
x
(x>0)的值域為[6,+∞),求b的值;
(Ⅱ)研究函數(shù)y=x2+
c
x2
(常數(shù)c>0)在定義域內的單調性,并說明理由;
(Ⅲ)對函數(shù)y=x+
a
x
和y=x2+
a
x2
(常數(shù)a>0)作出推廣,使它們都是你所推廣的函數(shù)的特例.研究推廣后的函數(shù)的單調性(只須寫出結論,不必證明),并求函數(shù)F(x)=(x2+
1
x
n+(
1
x2
+x
n(n是正整數(shù))在區(qū)間[
1
2
,2]上的最大值和最小值(可利用你的研究結論).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=x+
a
x
有如下性質:如果常數(shù)a>0,那么該函數(shù)在(0,
a
上是減函數(shù),在
a
,+∞)上是增函數(shù).
(1)如果函數(shù)y=x+
2b
x
在(0,4)上是減函數(shù),在(4,+∞)上是增函數(shù),求實常數(shù)b的值;
(2)設常數(shù)c∈1,4,求函數(shù)f(x)=x+
c
x
(1≤x≤2)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=x+
a
x
(x>0)有如下性質:如果常數(shù)a>0,那么該函數(shù)在(0,
a
]上是減函數(shù),在[
a
,+∞)上是增函數(shù).
(1)如果函數(shù)y=x+
b2
x
(x>0)的值域為[6,+∞),求b的值;
(2)研究函數(shù)y=x2+
c
x2
(x>0,常數(shù)c>0)在定義域內的單調性,并用定義證明(若有多個單調區(qū)間,請選擇一個證明);
(3)對函數(shù)y=x+
a
x
和y=x2+
a
x2
(x>0,常數(shù)a>0)作出推廣,使它們都是你所推廣的函數(shù)的特例.研究推廣后的函數(shù)的單調性(只須寫出結論,不必證明),并求函數(shù)F(x)=(x2+
1
x
)2
+(
1
x2
+x)2
在區(qū)間[
1
2
,2]上的最大值和最小值(可利用你的研究結論).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=x+
a
x
有如下性質:如果常數(shù)a>0,那么該函數(shù)在(0,
a
]
上是減函數(shù),在[
a
,+∞)
上是增函數(shù),
(1)如果函數(shù)y=x+
3m
x
(x>0)
的值域是[6,+∞),求實數(shù)m的值;
(2)研究函數(shù)f(x)=x2+
a
x2
(常數(shù)a>0)在定義域內的單調性,并說明理由;
(3)若把函數(shù)f(x)=x2+
a
x2
(常數(shù)a>0)在[1,2]上的最小值記為g(a),求g(a)的表達式.

查看答案和解析>>

同步練習冊答案