用數(shù)學(xué)歸納法證明“時(shí),從“”時(shí),左邊應(yīng)增添的式子是(    ).

A.B.C.D.

C

解析試題分析:當(dāng)時(shí),左邊=
當(dāng)時(shí),左邊=

考點(diǎn):數(shù)學(xué)歸納法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

執(zhí)行如圖程序框圖,輸出結(jié)果是         

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某算法的程序框圖如圖所示,其中輸入的變量x在1,2,3,…,24這24個(gè)整數(shù)中等可能隨機(jī)產(chǎn)生.

(1)分別求出按程序框圖正確編程運(yùn)行時(shí)輸出y的值為i的概率Pi(i=1,2,3);
(2)甲、乙兩同學(xué)依據(jù)自己對(duì)程序框圖的理解,各自編寫程序重復(fù)運(yùn)行n次后,統(tǒng)計(jì)記錄了輸出y的值為i(i=1,2,3)的頻數(shù).以下是甲、乙所作頻數(shù)統(tǒng)計(jì)表的部分?jǐn)?shù)據(jù).
甲的頻數(shù)統(tǒng)計(jì)表(部分)

運(yùn)行
次數(shù)n
輸出y的值
為1的頻數(shù)
輸出y的值
為2的頻數(shù)
輸出y的值
為3的頻數(shù)
30
14
6
10




2100
1027
376
697
乙的頻數(shù)統(tǒng)計(jì)表(部分)
運(yùn)行
次數(shù)n
輸出y的值
為1的頻數(shù)
輸出y的值
為2的頻數(shù)
輸出y的值
為3的頻數(shù)
30
12
11
7




2100
1051
696
353
當(dāng)n=2100時(shí),根據(jù)表中的數(shù)據(jù),分別寫出甲、乙所編程序各自輸出y的值為i(i=1,2,3)的頻率(用分?jǐn)?shù)表示),并判斷兩位同學(xué)中哪一位所編程序符合算法要求的可能性較大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

,則對(duì)于          

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

用數(shù)學(xué)歸納法證明:“1+a+a2+ +an+1 (a≠1,n∈N*)”在驗(yàn)證n=1時(shí),左端計(jì)算所得的項(xiàng)為(   )

A.1 B.1+a 
C.1+a+a2 D.1+a+a2+a3 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

圖1,2,3,4分別包含1,5,13和25個(gè)互不重疊的單位正方形,按同樣的方式構(gòu)造圖形,則第個(gè)圖包含______個(gè)互不重疊的單位正方形。

圖1      圖2         圖3              圖4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

①由“若a,b,c∈R,則(ab)c=a(bc)”類比“若a、b、c為三個(gè)向量,則(a·b)c=a(b·c)”;
②在數(shù)列{an}中,a1=0,an+1=2an+2,猜想an=2n-2;
③在平面內(nèi)“三角形的兩邊之和大于第三邊”類比在空間中“四面體的任意三個(gè)面的面積之和大于第四個(gè)面的面積”;
上述三個(gè)推理中,正確的個(gè)數(shù)為(  )

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

用反證法證明命題:“若整系數(shù)一元二次方程有有理根,那么中至少有一個(gè)是偶數(shù)時(shí),下列假設(shè)中正確的是

A.假設(shè)都是偶數(shù)
B.假設(shè)都不是偶數(shù)
C.假設(shè)至多有一個(gè)是偶數(shù)
D.假設(shè)至多有兩個(gè)是偶數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

用反證法證明命題:“若a,,能被5整除,則a,b中至少有一個(gè)能被5整除”,那么假設(shè)的內(nèi)容是(   )

A.a(chǎn),b都能被5整除B.a(chǎn),b都不能被5整除
C.a(chǎn),b有一個(gè)能被5整除D.a(chǎn),b有一個(gè)不能被5整除

查看答案和解析>>

同步練習(xí)冊(cè)答案