設(shè)數(shù)列{an}的前n項和為Sn,且Sn=2an-p,其中p是不為零的常數(shù).
(1)證明:數(shù)列{an}是等比數(shù)列
(2)當(dāng)p=2時,若數(shù)列{bn}滿足bn+1=bn+an(n∈N*),b1=2,求數(shù)列{bn}的前n項和Tn
考點:數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:(1)由已知得an=2an-1,a1=p,由此能證明{an}是首項為p公比為2的等比數(shù)列.
(2)因為當(dāng)p=2時,a1=2,則an=2n,由bn+1=bn+an(n∈N*),得bn+1-bn=2n,由累加法得bn=2n,由此能求出數(shù)列{bn}的前n項和.
解答: (1)證明:因為Sn=2an-p,
則Sn-1=2an-1-p(n≥2),
所以當(dāng)n≥2時,an=Sn-Sn-1=2an-2an-1,
整理得an=2an-1
由Sn=2an-p,令n=1,得a1=2a1-p,
解得a1=p,
所以{an}是首項為p公比為2的等比數(shù)列.
(2)解:因為當(dāng)p=2時,a1=2,則an=2n,
由bn+1=bn+an(n∈N*),得bn+1-bn=2n
當(dāng)n≥2時,由累加得
bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1
=2+2+22+…+2n-1
=2+
2(1-2n-1)
1-2

=2n,
∴數(shù)列{bn}的前n項和Tn=2+22+…+2n=
2(1-2n)
1-2
=2n+1-2.
點評:本題考查等比數(shù)列的證明,考查數(shù)列的前n項和的求法,解題時要認(rèn)真審題,注意累加法的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

把下列命題改寫成“若p,則q”的形式,并判斷命題的真假.
(1)能被6整除的數(shù)一定是偶數(shù);
(2)當(dāng)
a-1
+|b+2|=0時,a=1,b=-2;
(3)已知x,y為正整數(shù),當(dāng)y=x2時,y=1,x=1;
(4)與同一直線平行的兩個平面平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在棱長為a的正方體ABCD-A1B1C1D1中,點E是棱D1D的中點,點F在棱B1B上,
(1)當(dāng)滿足B1F=2FB.在棱C1C上確定一點G,使A,E,G,F(xiàn)四點共面,并求此時C1G的長;
(2)當(dāng)點F在棱B1B上移動時,求三棱錐F-ADE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法不正確的是( 。
A、命題“若x>0且y>0,則x+y>0”的否命題是假命題
B、命題“?x0∈R,x02-x0-1<0”的否定是“?x∈R,x2-x-1≥0”
C、“φ=
π
2
”是“y=sin(2x+φ)為偶函數(shù)”的充要條件
D、a<0時,冪函數(shù)y=xa在(0,+∞)上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若非零函數(shù)f(x)滿足f(x)=f(x-y)•f(y),且x<0時,f(x)>1,當(dāng)f(6)=
1
9
時,
(1)求f(3)的值,并證明f(x)>0.
(2)判斷函數(shù)f(x)的單調(diào)性并證明.
(3)若求使f(3sinx+1)•f(3-sinx)≤
1
3
成立的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若平面α的法向量為
n
,直線l的方向向量為
a
,直線l與平面α的夾角為θ,則下列關(guān)系式成立的是( 。
A、cos θ=
n•a
|n||a|
B、cos θ=
|n•a|
|n||a|
C、sin θ=
n•a
|n||a|
D、sin θ=
|n•a|
|n||a|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,設(shè)不等式組 
y≥0
x-y+1≥0
x+y-4≤0
,表示的平面區(qū)域為D,在D內(nèi)任取一整點P(橫、縱坐標(biāo)都是整數(shù))測P落在區(qū)域 
-1≤x≤1
0≤y≤1
內(nèi)的概率為( 。
A、
4
23
B、
8
23
C、
5
12
D、
5
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若cosθ=-
3
5
,θ∈(
π
2
,π),則sin(
π
3
-θ)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8cos410°-6cos20°+
3
sin40°=( 。
A、
3
B、3
C、
3
2
D、
1
2

查看答案和解析>>

同步練習(xí)冊答案