20.函數(shù)y=lg(2x2-x-1)的定義域為( 。
A.(-$\frac{1}{2}$,1)B.(1,+∞)C.(-∞,1)∪(2,+∞)D.(-∞,-$\frac{1}{2}$)∪(1,+∞)

分析 函數(shù)y=lg(2x2-x-1)的定義域滿足2x2-x-1>0,由此能求出函數(shù)y=lg(2x2-x-1)的定義域.

解答 解:函數(shù)y=lg(2x2-x-1)的定義域滿足:
2x2-x-1>0,解得x<-$\frac{1}{2}$或x>1,
∴函數(shù)y=lg(2x2-x-1)的定義域為(-∞,-$\frac{1}{2}$)∪(1,+∞).
故選:D.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知二次函數(shù)y=f(x)滿足f(0)=3,f(1)=0且f(x+2)是偶函數(shù).
(1)若f(x)在區(qū)間[2a,a+2]上不單調(diào),求a的取值范圍;
(2)若x∈[t,t+2],試求y=f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.執(zhí)行如圖所示的流程圖,則輸出的a的值等于( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.家政服務(wù)公司根據(jù)用戶滿意程度將本公司家政服務(wù)員分為兩類,其中A類服務(wù)員12名,B類服務(wù)員x名.
(Ⅰ)若采用分層抽樣的方法隨機抽取20名家政服務(wù)員參加技術(shù)培訓(xùn),抽取到B類服務(wù)員的人數(shù)是12,求x的值;
(Ⅱ)某客戶來公司聘請2名家政服務(wù)員,但是由于公司人員安排已經(jīng)接近飽和,只有3名A類家政服務(wù)員和2名B類家政服務(wù)員可供選擇.求該客戶最終聘請的家政服務(wù)員中既有A類又有B類的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞減的是(  )
A.y=ln|x|B.y=-x2+1C.y=$\frac{1}{x}$D.y=cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知{an}是等比數(shù)列,a1=1,a3-a2=2,則此數(shù)列的公比q=-1或2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.若tanθ=-2,求:
(1)$\frac{3sinθ-2cosθ}{2sinθ+cosθ}$;
(2)$\frac{1}{{2sinαcosα+{{cos}^2}α}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.先后2次拋擲一枚骰子,將得到的點數(shù)分別記為a,b
(Ⅰ)求滿足a2+b2=25的概率;
(Ⅱ)設(shè)三條線段的長分別為a,b和5,求這三條線段能圍成等腰三角形(含等邊三角形)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.點P是焦點為F1,F(xiàn)2的雙曲線$\frac{x^2}{25}-\frac{y^2}{16}=1$上的動點,若點I滿足 $\overrightarrow{PI}|{\overrightarrow{{F_1}{F_2}}}|+\overrightarrow{{F_1}I}|{\overrightarrow{P{F_2}}}|+\overrightarrow{{F_2}I}|{\overrightarrow{P{F_1}}}|=\overrightarrow 0$,則點I的橫坐標(biāo)為±5.

查看答案和解析>>

同步練習(xí)冊答案