已知3
OA
+2
OB
=(13,1),
OA
-
OB
=(1,-3).
(1)求向量
OA
OB
的坐標(biāo);
(2)在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),以向量
OA
OB
為鄰邊作平行四邊形OACB,求向量
AB
的坐標(biāo);
(3)設(shè)向量
OA
OB
的夾角為θ,求cosθ的值.
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:(1)利用向量的線性運(yùn)算即可得出;
(2)利用
AB
=
OB
-
OA
即可得出;
(3)利用cosθ=
OA
OB
|
OA
| |
OB
|
即可得出.
解答: 解:(1)∵3
OA
+2
OB
=(13,1),
OA
-
OB
=(1,-3),
5
OA
=(13,1)+2(1,-3)
=(15,-5),∴
OA
=(3,-1).
OB
=
OA
-(1,-3)
=(3,-1)-(1,-3)=(2,2).
(2)
AB
=
OB
-
OA
=(2,2)-(3,-1)=(-1,3).
(3)cosθ=
OA
OB
|
OA
| |
OB
|
=
4
10
8
=
5
5
點(diǎn)評(píng):本題考查了向量的線性運(yùn)算、三角形法則、向量的夾角公式、數(shù)量積運(yùn)算等基礎(chǔ)知識(shí)與基本技能方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集I={1,2,3,4,5,6},集合A,B都是I的子集,若A∩B={1,3,5},則稱A,B為“理想配集”,記作(A,B),問(wèn)這樣的“理想配集”(A,B)共有(  )
A、7個(gè)B、8個(gè)
C、27個(gè)D、28個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
1-x2,x≤1
f(x-2),x>1
,若方程f(x)=mx恰有四個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍為( 。
A、(8-2
15
,4-2
3
B、(4+2
3
,8+2
15
C、(4-2
3
,8+2
15
D、(8-2
15
,4+2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某班的數(shù)學(xué)研究性學(xué)習(xí)小組有9名成員,在暑假中各自都進(jìn)行了小課題研究活動(dòng),其中參加活動(dòng)一次的為2人,參加活動(dòng)兩次的為3人,參加活動(dòng)三次的為4人.
(1)從中人選3人,求這3人參加活動(dòng)次數(shù)各不相同的概率;
(2)從中任選2人,求這2人參加活動(dòng)次數(shù)之和的隨機(jī)變量ξ的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求矩陣A=
3 4
1 2
的逆矩陣.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,a≠1,命題p:“函數(shù)f(x)=ax在(0,+∞)上單調(diào)遞減”,命題q:“關(guān)于x的不等式x2-2ax+
1
4
≥0對(duì)一切的x∈R恒成立”,若p∧q為假命題,p∨q為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知矩陣M=(
10
0-1
),N=(
12
34
).
(Ⅰ)求使得MX=N成立的二階矩陣X;
(Ⅱ)求矩陣X的特征值以及每個(gè)特征值所對(duì)應(yīng)的一個(gè)特征向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

五個(gè)人站成一排,求在下列條件下的不同排法種數(shù):(用數(shù)字作答)
(1)甲、乙兩人相鄰;   
(2)甲、乙兩人不相鄰;
(3)甲不在排頭,并且乙不在排尾;
(4)甲在乙前,并且乙在丙前.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某班數(shù)學(xué)老師對(duì)班上50名同學(xué)一次考試的數(shù)學(xué)成績(jī)進(jìn)行統(tǒng)計(jì),得到如下統(tǒng)計(jì)表:
分?jǐn)?shù)段[30,50)[50,70)[70,90)[90,110)[110,130)[130,150]
人數(shù)2a121610c
頻率0.040.160.240.32bd
(1)求表中a,b,c的值,并估計(jì)該班的平均分x;
(2)若該老師想在低于70分的所有同學(xué)中隨機(jī)挑選3位同學(xué)了解學(xué)習(xí)情況,記X為所選3人中分?jǐn)?shù)在[30,50)的同學(xué)的人數(shù),求X的概率分布列和均值EX.

查看答案和解析>>

同步練習(xí)冊(cè)答案