甲、乙兩支足球隊(duì)鏖戰(zhàn)90分鐘踢成平局,加時(shí)賽30分鐘后仍成平局,現(xiàn)決定各派5名隊(duì)員,每人射一點(diǎn)球決定勝負(fù),設(shè)甲、乙兩隊(duì)每個(gè)隊(duì)員的點(diǎn)球命中率均為0.5.
(1)不考慮乙隊(duì),求甲隊(duì)僅有3名隊(duì)員點(diǎn)球命中,且其中恰有2名隊(duì)員連續(xù)命中的概率;
(2)求甲、乙兩隊(duì)各射完5個(gè)點(diǎn)球后,再次出現(xiàn)平局的概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某學(xué)校一位教師要去某地參加全國數(shù)學(xué)優(yōu)質(zhì)課比賽,已知他乘火車、輪船、汽車、飛機(jī)直接去的概率分別為0.3、0.1、0.2、0.4.
(1)求他乘火車或乘飛機(jī)去的概率;
(2)他不乘輪船去的概率;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

對(duì)有個(gè)元素的總體進(jìn)行抽樣,先將總體分成兩個(gè)子總體 和(是給定的正整數(shù),且),再從每個(gè)子總體中各隨機(jī)抽取個(gè)元素組成樣本.用表示元素同時(shí)出現(xiàn)在樣本中的概率.
(1)求的表達(dá)式(用表示);
(2)求所有的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)袋子中裝有a個(gè)紅球,b個(gè)黃球,c個(gè)藍(lán)球,且規(guī)定:取出一個(gè)紅球得1分,取出一個(gè)黃球得2分,取出一個(gè)藍(lán)球得3分.
(1)當(dāng)a=3,b=2,c=1時(shí),從該袋子中任取(有放回,且每球取到的機(jī)會(huì)均等)2個(gè)球,記隨機(jī)變量ξ為取出此兩球所得分?jǐn)?shù)之和,求ξ分布列;
(2)從該袋子中任取(且每球取到的機(jī)會(huì)均等)1個(gè)球,記隨機(jī)變量η為取出此球所得分?jǐn)?shù).若E(η)=,V(η)=,求a∶b∶c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙、丙三名射擊運(yùn)動(dòng)員射中目標(biāo)的概率分別為、a、a(0<a<1),三人各射擊一次,擊中目標(biāo)的次數(shù)記為ξ.
(1)求ξ的分布列及數(shù)學(xué)期望;
(2)在概率P(ξ=i)(i=0、1、2、3)中,若P(ξ=1)的值最大,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在0,1,2,3,…,9這十個(gè)自然數(shù)中,任取三個(gè)不同的數(shù)字.將取出的三個(gè)數(shù)字按從小到大的順序排列,設(shè)ξ為三個(gè)數(shù)字中相鄰自然數(shù)的組數(shù)(例如:若取出的三個(gè)數(shù)字為0,1,2,則相鄰的組為0,1和1,2,此時(shí)ξ的值是2),求隨機(jī)變量ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某市公租房房屋位于A、B、C三個(gè)地區(qū),設(shè)每位申請(qǐng)人只申請(qǐng)其中一個(gè)片區(qū)的房屋,且申請(qǐng)其中任一個(gè)片區(qū)的房屋是等可能的,求該市的任4位申請(qǐng)人中:
(1)若有2人申請(qǐng)A片區(qū)房屋的概率;
(2)申請(qǐng)的房屋在片區(qū)的個(gè)數(shù)的X分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某商店試銷某種商品20天,獲得如下數(shù)據(jù):

日銷售量(件)
0
1
2
3
頻數(shù)
1
5
9
5
試銷結(jié)束后(假設(shè)該商品的日銷售量的分布規(guī)律不變).設(shè)某天開始營業(yè)時(shí)由該商品3件,當(dāng)天營業(yè)結(jié)束后檢查存貨,若發(fā)現(xiàn)存量少于2件,則當(dāng)天進(jìn)貨補(bǔ)充至3件,否則不進(jìn)貨,將頻率視為概率.
(1)求當(dāng)天商店不進(jìn)貨的概率;
(2)記X為第二天開始營業(yè)時(shí)該商品視為件數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

生產(chǎn)A,B兩種元件,其質(zhì)量按測試指標(biāo)劃分為:指標(biāo)大于或等于82為正品,小于82為次品,現(xiàn)隨機(jī)抽取這兩種元件各100件進(jìn)行檢測,檢測結(jié)果統(tǒng)計(jì)如下:

測試指標(biāo)
[70,76)
[76,82)
[82,88)
[88,94)
[94,100]
元件A
8
12
40
32
8
元件B
7
18
40
29
6
(1)試分別估計(jì)元件A、元件B為正品的概率;
(2)生產(chǎn)一件元件A,若是正品可盈利50元,若是次品則虧損10元;生產(chǎn)一件元件B,若是正品可盈利100元,若是次品則虧損20元,在(1)的前提下:
(i)求生產(chǎn)5件元件B所獲得的利潤不少于300元的概率;
(ii)記X為生產(chǎn)1件元件A和1件元件B所得的總利潤,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案