復(fù)數(shù)Z滿足Z=
2+i
i
,則
.
Z
等于( 。
A、1-2iB、1+2i
C、2-iD、2+i
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用復(fù)數(shù)的運(yùn)算法則和共軛復(fù)數(shù)的定義即可得出.
解答: 解:∵Z=
2+i
i
=
-i(2+i)
-i•i
=-2i+1,
.
Z
=1+2i.
故選:B.
點(diǎn)評(píng):本題考查了復(fù)數(shù)的運(yùn)算法則和共軛復(fù)數(shù)的定義,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三次函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),若f(x)=x3+2xf′(1),則函數(shù)f(x)的極大值為(  )
A、8
2
B、4
2
C、-8
2
D、-4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
1+sinθ-cosθ
1+sinθ+cosθ
=
1
2
,則tanθ的值為( 。
A、
3
3
B、
3
4
C、-
4
3
D、
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列各式中,能作為數(shù)列2,0,2,0…通項(xiàng)公式的一個(gè)是( 。
A、an=(-1)n+1
B、an=(-1)n+1+1
C、an=
1
2
[(-1)n+1+1]
D、an=
1
2
[(-1)n+1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)m,n分別是先后拋擲一枚骰子所得到的點(diǎn)數(shù),則在先后兩次出現(xiàn)的點(diǎn)數(shù)中有5的情況下,方程x2+mx+n=0有實(shí)根的概率是(  )
A、
11
36
B、
7
36
C、
7
11
D、
7
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)滿足f(x+2)=f(x),且當(dāng)x∈[-1,1]時(shí),f(x)=x2,則函數(shù)y=f(x)與函數(shù)y=log3x的圖象的交點(diǎn)的個(gè)數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線ax+y+a-1=0不經(jīng)過(guò)第一象限,則與該直線垂直的直線的傾斜角的取值范圍( 。
A、[
π
2
,
4
]
B、(
π
2
,
4
]
C、[0,
π
4
]
D、(0,
π
4
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,為測(cè)得河對(duì)岸某建筑物AB的高,先在河岸上選一點(diǎn)C,使C在建筑物底端B的正東方向上,測(cè)得點(diǎn)A的仰角為60°,再由點(diǎn)C沿東偏北75°方向走20米到達(dá)位置D,測(cè)得∠BDC=30°.
(I)求sin∠BCD的值;
(Ⅱ)求此建筑物的高度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知四棱錐P-ABCD的三視圖如圖所示.
(1)畫出P-ABCD的直觀圖;
(2)求四棱錐P-ABCD的側(cè)面積與體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案