已知二次函數(shù)f(x)=x2+ax+b,滿足f(0)=6,f(1)=5.
(1)求函數(shù)y=f(x)的解析式;
(2)當(dāng)x∈[-2,2]時(shí),求函數(shù)y=f(x)的最小值和最大值.
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)根據(jù)f(0)=6,f(1)=5,得到方程組,解出即可;(2)先求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最值.
解答: 解:(1)由題意得:
b=6
1+a+b=5
,解得:
a=-2
b=6
,
∴f(x)=x2-2x+6,
(2)f(x)=x2-2x+6=(x-1)2+5,
∴f(x)在[-2,1)遞減,在(1,2]遞增,
∴f(x)最大值=f(-2)=14,f(x)最小值=f(1)=5.
點(diǎn)評(píng):本題考查了求二次函數(shù)的解析式問題,考查了函數(shù)的單調(diào)性以及最值問題,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an} 的前n項(xiàng)和為 Sn,令Tn=
S1+S2+…+Sn
n
,稱 Tn為數(shù)列 a1,a2,…,an的“理想數(shù)“,已知數(shù)列a1,a2,…,a20的“理想數(shù)“為21,那么數(shù)列2,a1,a2,…,a20 的“理想數(shù)”為( 。
A、23B、24C、22D、20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于給定的正整數(shù)n,則由直線y=n2與拋物線y=x2所圍成的封閉區(qū)域內(nèi)(包括邊界)的整點(diǎn)個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面內(nèi)△ABC及一點(diǎn)O滿足
AO
AB
=
BO
BA
,
BO
BC
=
CO
CB
,則點(diǎn)O是△ABC的(  )
A、重心B、垂心C、內(nèi)心D、外心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

抽樣調(diào)查某地區(qū)1000個(gè)有兩個(gè)小孩的家庭﹐得到如下數(shù)據(jù)﹐其中(男,女)代表第一個(gè)小孩是男孩而第二個(gè)小孩是女生的家庭﹐余類推.
家庭別家庭數(shù)
(男,男)261
(男,女)249
(女,男)255
(女,女)235
由此數(shù)據(jù)可估計(jì)該地區(qū)有兩個(gè)小孩家庭的男﹑女孩性別比約為
 
:100.(四舍五入至整數(shù)位).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3-6ax2+b,是否存在實(shí)數(shù)a,b,使f(x)在[-1,2]上取得最大值3,最小值-29?若存在,求出a,b的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在智利地震災(zāi)區(qū)的搜救現(xiàn)場(chǎng),一條搜救狗沿正北方向行進(jìn)xm發(fā)現(xiàn)生命跡象,然后向右轉(zhuǎn)105°,行進(jìn)10m發(fā)現(xiàn)另一生命跡象,這時(shí)它向右轉(zhuǎn)135°后續(xù)繼前行回到出發(fā)點(diǎn),那么x=
 
m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
sinπx(x<0)
f(x-1)-1(x>0)
,如果當(dāng)-2<m<0時(shí),有f(
11
6
)+f(m)=-2,則實(shí)數(shù)m等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線y=x+1按向量
a
=(-1,k)平移后與圓(x-1)2+(y+2)2=2相切,則實(shí)數(shù)k的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案