設(shè)F為拋物線y2=4x的焦點(diǎn),A、B、C為該拋物線上三點(diǎn),若++=0,則||+||+||=___________。
6
解析試題分析:設(shè)A(x1,y1),B(x2,y2),C(x3,y3),拋物線焦點(diǎn)坐標(biāo)F(1,0),準(zhǔn)線方程:x=-1,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/43/6/e4cki.png" style="vertical-align:middle;" />++=0,所以點(diǎn)F是△ABC重心,則x1+x2+x2=3, y,+y2+y3=0,而|FA|=x1-(-1)=x1+1, |FB|=x2-(-1)=x2+1, |FC|=x3-(-1)=x3+1,所以|FA|+|FB|+|FC|= x1+1+ x2+1+ x3+1="(" x1+ x2+ x3)+3=3+3=6。
考點(diǎn):拋物線的簡單性質(zhì);重心的性質(zhì);重心的坐標(biāo)公式。
點(diǎn)評:在∆ABC中,設(shè)A(x1,y1),B(x2,y2),C(x3,y3),則∆ABC重心的坐標(biāo)為。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
已知直線過點(diǎn), 且直線與曲線交于兩點(diǎn). 若點(diǎn)恰好是的中點(diǎn),則直線的方程是: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
已知點(diǎn),點(diǎn)是拋物線: 的焦點(diǎn),點(diǎn)是拋物線上的點(diǎn),則使取最小值時(shí)點(diǎn)的坐標(biāo)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
橢圓的左、右焦點(diǎn)分別為F1、F2,過橢圓的右焦點(diǎn)F2作一條直線l交橢圓與P、Q兩點(diǎn),則△F1PQ內(nèi)切圓面積的最大值是
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com