【題目】已知R上的奇函數(shù)f(x),對任意x∈R,f(x+1)=﹣f(x),且當(dāng)x∈(﹣1,1)時(shí),f(x)=x,則f(3)+f(﹣7.5)= .
【答案】0.5
【解析】解:R上的奇函數(shù)f(x),對任意x∈R,f(x+1)=﹣f(x),再由f(﹣x)=﹣f(x),可得f(﹣x)=f(x+1),
從而可得 f(x)=f(x+2),故函數(shù)f(x)是以2為周期的周期函數(shù),故f(0)=f(2)=0.
∴f(3)=﹣f(3+1)=﹣f(4)=﹣f(2)=0,
f(﹣7.5)=f(﹣7.5+8)=f(0.5)=0.5,
∴f(3)+f(﹣7.5)=0+0.5=0.5,
所以答案是 0.5.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)奇偶性的性質(zhì)(在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從0,1,2,3,4,5共6個(gè)數(shù)中任取三個(gè)組成的無重復(fù)數(shù)字的三位數(shù),其中能被5整除的有( )
A.40個(gè)
B.36個(gè)
C.28個(gè)
D.60個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若a,b∈R,i為虛數(shù)單位,且(a+i)i=b+i則( )
A.a=1,b=1
B.a=﹣1,b=1
C.a=﹣1,b=﹣1
D.a=1,b=﹣1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知當(dāng)x∈(1,2]時(shí),不等式(x﹣1)2≤logax恒成立,則實(shí)數(shù)a的取值范圍為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】f(x)是奇函數(shù),且滿足f(x+4)=f(x),當(dāng)0≤x≤1時(shí),f(x)=x,則f(7.5)的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)是定義在R上的偶函數(shù),在(﹣∞,0]上是減函數(shù),且f(﹣2)=0,則使得f(x)<0的x的取值范圍 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com