【題目】已知函數(shù)f(x)=elnx,g(x)=f(x)-(x+1).(e=2.718……)

(1)求函數(shù)g(x)的極大值;

(2)求證:1++…+>ln(n+1)(n∈N*).

【答案】見(jiàn)解析

【解析】(1)解 ∵g(x)=f(x)-(x+1)=lnx-(x+1),

∴g′(x)=-1(x>0).

令g′(x)>0,解得0<x<1;

令g′(x)<0,解得x>1.

∴函數(shù)g(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,

∴g(x)極大值=g(1)=-2.

(2)證明 由(1)知x=1是函數(shù)g(x)的極大值點(diǎn),也是最大值點(diǎn),

∴g(x)≤g(1)=-2,即lnx-(x+1)≤-2lnx≤x-1(當(dāng)且僅當(dāng)x=1時(shí)等號(hào)成立),

令t=x-1,得t≥ln(t+1),t>-1,

取t= (n∈N*)時(shí),

>ln=ln

∴1>ln2,>ln>ln,…,>ln,

疊加得1++…+>ln(2···…·)=ln(n+1).

即1++…+>ln(n+1).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C:x2+y2=4,直線l:x+y=2.以O(shè)為極點(diǎn),x軸的正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系.

(1)將圓C和直線l的方程化為極坐標(biāo)方程;

(2)P是l上的點(diǎn),射線OP交圓C于點(diǎn)R,又點(diǎn)Q在OP上且滿足|OQ|·|OP|=|OR|2,當(dāng)點(diǎn)P在l上移動(dòng)時(shí),求點(diǎn)Q軌跡的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行試銷,得到如下數(shù)據(jù)及散點(diǎn)圖:

其中, , .

(1)根據(jù)散點(diǎn)圖判斷, 哪一對(duì)具有較強(qiáng)的線性相關(guān)性(給出判斷即可,不必說(shuō)明理由)?

(2)根據(jù)(1)的判斷結(jié)果及數(shù)據(jù),建立關(guān)于的回歸方程(運(yùn)算過(guò)程及回歸方程中的系數(shù)均保留兩位有效數(shù)字).

(3)定價(jià)為150元/ 時(shí),天銷售額的預(yù)報(bào)值為多少元?

附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計(jì)分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x3-3ax-1,a≠0.

(1)求f(x)的單調(diào)區(qū)間;

(2)若f(x)在x=-1處取得極值,直線y=m與y=f(x)的圖象有三個(gè)不同的交點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量, ,設(shè)函數(shù).

(1)求函數(shù)的最小正周期;

(2)已知分別為三角形的內(nèi)角對(duì)應(yīng)的三邊長(zhǎng), 為銳角, , ,且恰是函數(shù)上的最大值,求和三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)關(guān)于x的函數(shù)y=2cos2x-2acosx-(2a+1)的最小值為f(a),試確定滿足f(a)=的a的值,并求此時(shí)函數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校進(jìn)行體驗(yàn),現(xiàn)得到所有男生的身高數(shù)據(jù),從中隨機(jī)抽取50人進(jìn)行統(tǒng)計(jì)(已知這50個(gè)身高介于155 到195之間),現(xiàn)將抽取結(jié)果按如下方式分成八組:第一組,第二組,…,第八組,并按此分組繪制如圖所示的頻率分布直方圖,其中第六組和第七組還沒(méi)有繪制完成,已知第一組與第八組人數(shù)相同,第六組和第七組人數(shù)的比為5:2.

(1)補(bǔ)全頻率分布直方圖;

(2)根據(jù)頻率分布直方圖估計(jì)這50位男生身高的中位數(shù);

(3)用分層抽樣的方法在身高為內(nèi)抽取一個(gè)容量為5的樣本,從樣本中任意抽取2位男生,求這兩位男生身高都在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合A{x|(x3)(xa)<0a∈R},集合B{xZ|x23x4<0}

(1)AB的子集個(gè)數(shù)為4,求a的范圍;

(2)aZ,當(dāng)AB時(shí),求a的最小值,并求當(dāng)a取最小值時(shí)AB.

查看答案和解析>>

同步練習(xí)冊(cè)答案