18.已知直線$l:mx+y+3m-\sqrt{3}=0$與圓x2+y2=12交于A,B兩點(diǎn),若$|{AB}|=2\sqrt{3}$,則直線l在x軸上的截距為-6.

分析 利用弦長(zhǎng)公式,求出圓心到直線的距離,利用點(diǎn)到直線的距離公式建立方程,求出實(shí)數(shù)m的值,即可求出直線l在x軸上的截距.

解答 解:由題意,|AB|=2$\sqrt{3}$,
∴圓心到直線的距離d=3,
∴$\frac{|3m-\sqrt{3}|}{\sqrt{{m}^{2}+1}}$=3,
∴m=-$\frac{\sqrt{3}}{3}$.
直線$l:mx+y+3m-\sqrt{3}=0$,令y=0,可得x=-6.
故答案為-6.

點(diǎn)評(píng) 本題考查直線與圓的位置關(guān)系,考查弦長(zhǎng)的計(jì)算,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知拋物線y2=2px(p>0)與橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)有相同的焦點(diǎn),點(diǎn)A是兩曲線的一個(gè)公共點(diǎn),若|AF|=$\frac{5p}{6}$,則橢圓的離心率為( 。
A.$\frac{-5+\sqrt{51}}{2}$B.$\frac{-5+\sqrt{61}}{6}$C.$\frac{1}{2}$D.$\frac{2\sqrt{2}-1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}滿足a10+a9=6a8,若存在兩項(xiàng)am,an使得$\sqrt{{a_m}{a_n}}=4{a_1}$,則$\frac{2}{m}+\frac{1}{n}$的最大值為( 。
A.$\frac{1}{2}+\frac{\sqrt{2}}{3}$B.$\frac{11}{5}$C.$\frac{9}{10}$D.$3+2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=alnx-(a+1)x-$\frac{1}{x}$
(1)當(dāng)a<-1時(shí),討論f(x)的單調(diào)性
(2)當(dāng)a=1時(shí),若g(x)=-x-$\frac{1}{x}$-1,證明:當(dāng)x>1時(shí),g(x)的圖象恒在f(x)的圖象上方
(3)證明:$\frac{ln2}{{2}^{2}}$+$\frac{ln3}{{3}^{2}}$+…+$\frac{lnn}{{n}^{2}}$<$\frac{2{n}^{2}-n-1}{4(n+1)}$(n∈N*,n≥2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若直線3x+y-3=0與直線6x+my+1=0平行,則它們之間的距離為( 。
A.$\frac{{\sqrt{10}}}{4}$B.$\frac{{\sqrt{10}}}{5}$C.$\frac{{7\sqrt{10}}}{10}$D.$\frac{{7\sqrt{10}}}{20}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在如圖所示的幾何體中,AF⊥平面ABCD,EF∥AB,四邊形ABCD為矩形,AD=2,AB=AF=2EF=1,P是棱DF的中點(diǎn).
(1)求證:BF∥平面ACP;
(2)求異面直線CE與AP所成角的余弦值;
(3)求二面角D-AP-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)t∈R,已知p:函數(shù)f(x)=x2-tx+1有零點(diǎn),q:?x∈R,|x-1|≥2-t2
(Ⅰ)若q為真命題,求t的取值范圍;
(Ⅱ)若p∨q為假命題,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知變量x,y線性負(fù)相關(guān),且由觀測(cè)數(shù)據(jù)算得樣本平均數(shù)$\overline x=3$,$\overline y=3.5$,則由該觀測(cè)數(shù)據(jù)算得的線性回歸方程可能是(  )
A.y=0.4x+2.4B.y=2x+2.4C.y=-2x+9.5D.y=-0.3x+4.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知f′(x)是定義在(0,+∞)上的函數(shù)f(x)的導(dǎo)函數(shù),若方程f′(x)=0無解,且?x∈(0,+∞),f[f(x)-log2016x]=2017,設(shè)a=f(20.5),b=f(logπ3),c=f(log43),則a,b,c的大小關(guān)系是(  )
A.b>c>aB.a>c>bC.c>b>aD.a>b>c

查看答案和解析>>

同步練習(xí)冊(cè)答案