若直線3x+4y+c=0與圓(x+1)2+y2=4相切,則c的值為(  )
A、0B、13或-7C、±2D、2
考點(diǎn):圓的切線方程
專題:直線與圓
分析:根據(jù)直線和圓相切的等價(jià)條件即可得到結(jié)論.
解答: 解:圓心坐標(biāo)為(-1,0),半徑R=2,
若直線和圓相切,
則圓心到直線的距離d=
|-3+c|
32+42
=
|c-3|
5
=2
,
即|c-3|=10,
解得c=13或c=-7,
故選:B
點(diǎn)評(píng):本題主要考查直線和圓位置關(guān)系的應(yīng)用,根據(jù)直線和圓相切的等價(jià)條件是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知y=loga2(x2-2x-3),當(dāng)x<-1時(shí),y是增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方體ABCD-A1B1C1D1棱長(zhǎng)為1,E、F、H分別為面A1ADD1、面DCC1D1與面BCC1B1的中心.
(1)求證:平面EFH∥平面ABCD;
(2)求三棱錐C1-BEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}滿足:a1=1,an=an-1+3n-2(n≥2),則a3=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程x2+y2+ax-ay+2=0表示一個(gè)圓,則a的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
1
2
sin(2x+
x
6
)+1,(x∈R)
(1)求它的振幅、最小正周期、初相;
(2)當(dāng)函數(shù)y取得最大值時(shí),求自變量x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的公比q=3,前3項(xiàng)的和S3=
13
3

(1)求等比數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=3nan,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x,y滿足
y≤5
2x-y+3≤0
x+y-1≥0
,則z=|x|-2y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算0.25-2-
1
2
lg16-2lg5+log23•log34=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案