精英家教網 > 高中數學 > 題目詳情
4.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左焦點為F(-1,0),O為坐標原點,點$G({1,\frac{{\sqrt{2}}}{2}})$在橢圓上,過點F的直線l交橢圓于不同的兩點 A、B.
(1)求橢圓C的方程;
(2)求弦AB的中點M的軌跡方程.

分析 (1)利用橢圓的焦點坐標,橢圓經過的點,列出a,b方程組,求解可得橢圓方程;
(2)設M(x,y),A(x1,y1),B(x2,y2),利用中點坐標公式以及平方差公式,化簡可得M的軌跡方程.

解答 解:(1)由題意有a2-b2=1,且$\frac{1^2}{a^2}+\frac{{{{(\frac{{\sqrt{2}}}{2})}^2}}}{b^2}=1$,
解得a2=2,b2=1,
∴橢圓C的方程為$\frac{x^2}{2}+{y^2}=1$.…(4分)
(2)設M(x,y),A(x1,y1),B(x2,y2),則$x=\frac{{{x_1}+{x_2}}}{2}$,$y=\frac{{{y_1}+{y_2}}}{2}$
當x1=x2時,M點的坐標為(-1,0).
當x1≠x2時,
∵$\frac{{{x_1}^2}}{2}+{y_1}^2=1$,$\frac{{{x_2}^2}}{2}+{y_2}^2=1$,
兩式相減得$\frac{{({x_1}+{x_2})(x{\;}_1-{x_2})}}{2}=-({y_1}+{y_2})({y_1}-{y_2})$,
∴$\frac{2x}{2•2y}=-\frac{{{y_1}-{y_2}}}{{{x_1}-{x_2}}}$.
又AB過F點,于是AB的斜率為$\frac{{{y_1}-{y_2}}}{{{x_1}-{x_2}}}=\frac{y-0}{x+1}$,
∴$\frac{x}{2y}$=$-\frac{y}{x+1}$,
整理得x2+2y2+x=0.
∵(-1,0)也滿足上式,
∴M的軌跡方程為x2+2y2+x=0.…(12分)

點評 本題考查橢圓的簡單性質,橢圓方程的求法,軌跡方程的求法,考查轉化思想以及計算能力.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

14.如圖,已知正三棱柱ABC-A1B1C1的底面邊長是2,D是側棱CC1的中點,直線AD與側BB1C1C所成的角為45°.
(1)求此正三棱柱的側棱長;
(2)求二面角A-BD-C的平面角的正切值;
(3)求點C到平面ABD的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.如圖,四棱錐P-ABCD中,PB⊥底面ABCD.底面ABCD為直角梯形,∠ABC=90°,AD∥BC,BC=2,AB=AD=PB=1,點E為棱PA的中點.
(Ⅰ)求證:CD⊥平面PBD;
(Ⅱ)求二面角A-BE-D的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

12.已知$f(x)=lnx-ax+\frac{1-a}{x}-1(a∈R)$.
(1)當$0<a<\frac{1}{2}$時,求函數f(x)的單調區(qū)間;
(2)設g(x)=x2-2bx+4.當$a=\frac{1}{4}$時,若對任意$x∈[\frac{1}{e},e]$,存在x2∈[1,2],使f(x1)=g(x2),求實數b取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.在幾何體ABCDE中,四邊形ABCD是正方形,CE⊥平面ADE且CE=EF=2,F是線段DE的中點.
(I)求證:平面BCF⊥平面CDE;
(II)求二面角A-BF-E的平面角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的中心在原點,右頂點為A(2,0),其離心率與雙曲線$\frac{y^2}{3}-{x^2}=1$的離心率互為倒數
(1)求橢圓的方程;
(2)已知M,N是橢圓C上的點,O為原點,直線OM與ON的斜率之積為$-\frac{1}{4}$,若動點P(x0,y0)滿足$\overrightarrow{OP}=\overrightarrow{OM}+3\overrightarrow{ON}$,求證:${x_0}^2+4{y_0}^2$為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

16.如圖,單擺的擺線離開平衡位置的位移S(厘米)和時間t(秒)的函數關系是S=$\frac{1}{2}$sin(2t+$\frac{π}{3}$),則擺球往復擺動一次所需要的時間是π秒.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.如圖所示,幾何體為一個球挖去一個內接正方體得到的組合體,現用一個經過球心的平面截它,所得的截面圖形不可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.已知函數f(x)=ax+blnx在點(1,a)處的切線方程為y=-x+3.
①求a,b的值;
②求函數$g(x)=f(x)-\frac{1}{x}$在區(qū)間$[{\frac{1}{2},2}]$上的最值.

查看答案和解析>>

同步練習冊答案