20.使不等式23x-1>2成立的x取值范圍為( 。
A.($\frac{2}{3}$,+∞)B.(1,+∞)C.($\frac{1}{3}$,+∞)D.(-$\frac{1}{3}$,+∞)

分析 直接利用指數(shù)函數(shù)的單調(diào)性化指數(shù)不等式為一元一次不等式求解.

解答 解:由23x-1>2,得3x-1>1,∴x>$\frac{2}{3}$.
∴使不等式23x-1>2成立的x取值范圍為($\frac{2}{3},+∞$).
故選:A.

點(diǎn)評(píng) 本題考查指數(shù)不等式的解法,考查了指數(shù)函數(shù)的性質(zhì),是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列命題中是假命題的是( 。
A.?m∈R,使$f(x)=({m-1})•{x^{{m^2}-4m+3}}$是冪函數(shù),且在(0,+∞)上遞減
B.函數(shù)$f(x)=lg[{{x^2}+({a+1})x-a+\frac{1}{4}}]$的值域?yàn)镽,則a≤-6或a≥0
C.關(guān)于x的方程ax2+2x+1=0至少有一個(gè)負(fù)根的棄要條件是a≤1
D.函數(shù)y=f(a+x)與函數(shù)y=f(a-x)的圖象關(guān)于直線x=a對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.一條漸近線方程為y=$\sqrt{3}$x,焦點(diǎn)(4,0),則雙曲線的標(biāo)準(zhǔn)方程為$\frac{x^2}{4}-\frac{y^2}{12}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知△ABC的頂點(diǎn)A的坐標(biāo)為(1,2),AB邊上的中線CM所在直線的方程為x-2y-5=0,AC邊上的高BH所在直線的方程為2x-y-5=0,求AC邊的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD是直角梯形,其中DA⊥AB,AD∥BC.PA=2AD=BC=2,AB=2$\sqrt{2}$.
(1)求異面直線PC與AD所成角的大。
(2)若平面ABCD內(nèi)有一經(jīng)過(guò)點(diǎn)C的曲線E,該曲線上的任一動(dòng)點(diǎn)Q都滿足PQ與AD所成角的大小恰等于PC與AD所成角.試判斷曲線E的形狀并說(shuō)明理由;
(3)在平面ABCD內(nèi),設(shè)點(diǎn)Q是(2)題中的曲線E在直角梯形ABCD內(nèi)部(包括邊界)的一段曲線CG上的動(dòng)點(diǎn),其中G為曲線E和DC的交點(diǎn).以B為圓心,BQ為半徑r的圓分別與梯形的邊AB、BC交于M、N兩點(diǎn).當(dāng)Q點(diǎn)在曲線段CG上運(yùn)動(dòng)時(shí),試求圓半徑r的范圍及VP-BMN的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.空間三個(gè)平面能把空間分成的部分為( 。
A.6或4B.7或8C.5或6或7D.4或6或7或8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.直線x=-1的傾斜角等于(  )
A.B.90°C.135°D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知函數(shù)f(x)=x2+bx的圖象過(guò)點(diǎn)(1,2),記an=$\frac{1}{f(n)}$.若數(shù)列{an}的前n項(xiàng)和為Sn,則Sn等于( 。
A.$\frac{1}{n}$B.$\frac{1}{n+1}$C.$\frac{n-1}{n}$D.$\frac{n}{n+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知數(shù)列{an}的前n項(xiàng)和為Sn,且對(duì)任意正整數(shù)n,都有an=$\frac{3}{4}{S_n}$+2成立.
(1)記bn=log2an,求數(shù)列{bn}的通項(xiàng)公式;
(2)設(shè)cn=$\frac{1}{{{b_n}{b_{n+1}}}}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案