某校1000名學(xué)生的數(shù)學(xué)測(cè)試成績(jī)分布直方圖如圖所示,分?jǐn)?shù)不低于a即為優(yōu)秀,如果優(yōu)秀的人數(shù)為175人,則a的估計(jì)值是
 

考點(diǎn):頻率分布直方圖
專題:概率與統(tǒng)計(jì)
分析:根據(jù)頻率分布直方圖,求出分?jǐn)?shù)在140~150和130~140的人數(shù)是多少,即可得出正確的結(jié)論.
解答: 解:根據(jù)頻率分布直方圖,得;
分?jǐn)?shù)在140~150的人數(shù)是1000×0.010×10=100,
分?jǐn)?shù)在130~140的人數(shù)是1000×0.015×10=150,
∴分?jǐn)?shù)在135~150的人數(shù)是150÷2+100=175;
∴當(dāng)優(yōu)秀的人數(shù)為175人時(shí),a的估計(jì)值是135.
故答案為:135.
點(diǎn)評(píng):本題考查了頻率分布直方圖的應(yīng)用問題,解題時(shí)應(yīng)根據(jù)頻率=
頻數(shù)
樣本容量
的關(guān)系進(jìn)行解答,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有一小型自來(lái)水廠,蓄水池中已有水450噸,水廠每小時(shí)可向蓄水池注水80噸,同時(shí)蓄水池向居民小區(qū)供水,x小時(shí)內(nèi)供水總量為80
20x
噸.現(xiàn)在開始向池中注水并同時(shí)向居民小區(qū)供水,問:
(1)多少小時(shí)后蓄水池中的水量最少?
(2)如果蓄水池中存水量少于150噸時(shí),就會(huì)出現(xiàn)供水緊張,那么有幾個(gè)小時(shí)供水緊張?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C1,C2的極坐標(biāo)方程分別為ρ=4cos(θ+
π
6
)和ρcos(θ+
π
6
)=5.
(1)將C1,C2的方程化為直角坐標(biāo)方程;
(2)設(shè)點(diǎn)P在曲線C1上,點(diǎn)Q在C2上,求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,直線l與拋物線y2=2x相交于A,B兩點(diǎn).
(1)求證:“如果直線l過點(diǎn)(3,0),那么
OA
OB
=3”是真命題.
(2)寫出(1)中命題的逆命題(直線l與拋物線y2=2x相交于A,B兩點(diǎn)為大前提),判斷它是真命題還是假命題,如果是真命題,寫出證明過程;如果是假命題,則只需要舉出一個(gè)反例說(shuō)明即可.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:lg2+lne-lg102+49log73.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)實(shí)數(shù)a,b,c滿足a2+2b2+3c2=
3
2
,求
1
2a
+
1
4b
+
1
8c
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(x-
π
6
)+
1
2

(1)若x∈[0,
π
2
],f(x)=
11
10
,求cosx的值;
(2)在△ABC中,角A、B、C的對(duì)邊分別是a、b、c,且滿足2bcosA≤2c-
3
a,求f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿足
x-y-1≤0
x≥1
2x+y-6≤0
,則當(dāng)x+y=3時(shí),目標(biāo)函數(shù)z=
y
x
的取值范圍是( 。
A、[
4
7
,4]
B、[
1
2
,2]
C、[
1
2
,4]
D、[
4
7
,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
a
b
、
c
是單位向量,若
a
+
b
=
2
c
,則
a
c
的值為( 。
A、
2
2
B、-
2
2
C、1
D、-1

查看答案和解析>>

同步練習(xí)冊(cè)答案