【題目】如圖,已知三角形的頂點為A(2,4),B(0,-2),C(-2,3),求:

(1)直線AB的方程;

(2)AB邊上的高所在直線的方程;

(3)AB的中位線所在的直線方程.

【答案】(1)3xy-2=0.(2)x+3y-7=0.(3)6x-2y+7=0.

【解析】

(1)根據(jù)斜率公式和題意求出直線AB的斜率,再代入點斜式方程化為一般式即可;

(2)設(shè)AB邊上的高所在的直線方程為y=-xm,由直線過點C(-2,3),求出的值,可得AB邊上的高所在直線的方程;

(3)根據(jù)AB邊的中位線與AB平行且過AC中點(0,),求得AB的中位線所在的直線方程.

(1)由已知直線AB的斜率=3,

∴直線AB的方程為y=3x-2,即3xy-2=0.

(2)設(shè)AB邊上的高所在的直線方程為y=-xm,由直線過點C(-2,3),

3=m,解得m,故所求直線為y=-x,即x+3y-7=0.

(3)AB邊的中位線與AB平行且過AC中點(0,),

AB的中位線所在的直線方程為y=3x,即6x-2y+7=0.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某創(chuàng)業(yè)投資公司擬開發(fā)某種新能源產(chǎn)品,估計能獲得萬元到萬元的投資利益,現(xiàn)準備制定一個對科研課題組的獎勵方案:獎金(單位:萬元)隨投資收益(單位:萬元)的增加而增加,且獎金不超過萬元,同時獎金不超過收益的

)請分析函數(shù)是否符合公司要求的獎勵函數(shù)模型,并說明原因.

)若該公司采用函數(shù)模型作為獎勵函數(shù)模型,試確定最小正整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過點的動直線與拋物線 相交于 兩點.當直線的斜率是時, .

(1)求拋物線的方程;

(2)設(shè)線段的中垂線在軸上的截距為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn),當圓內(nèi)接多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,由此創(chuàng)立了割圓術(shù),利用割圓術(shù)劉徽得到了圓周率精確到小數(shù)點后面兩位的近似值3.14,這就是著名的徽率.如圖是利用劉徽的割圓術(shù)設(shè)計的程序框圖,則輸出的n值為( ) 參考數(shù)據(jù): ,sin15°≈0.2588,sin7.5°≈0.1305.

A.12
B.24
C.48
D.96

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=cos(2x)+sin2x.

(1)求函數(shù)f(x)的最小正周期;

(2)求函數(shù)f(x)的最大值,并寫出f(x)取最大值時x的取值;

(3)設(shè)A,BCABC的三個內(nèi)角,若cosB,f ()=-,且C為銳角,求sinA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】華中師大附中中科教處為了研究高一學(xué)生對物理和數(shù)學(xué)的學(xué)習(xí)是否與性別有關(guān),從高一年級抽取60名同學(xué)(男同學(xué)30名,女同學(xué)30名),給所有同學(xué)物理題和數(shù)學(xué)題各一題,讓每位同學(xué)自由選擇一道題進行解答.選題情況如表:(單位:人)

物理題

數(shù)學(xué)題

總計

男同學(xué)

16

14

30

女同學(xué)

8

22

20

總計

24

36

60


(1)在犯錯誤的概率不超過1%的條件下,能否判斷高一學(xué)生對物理和數(shù)學(xué)的學(xué)習(xí)與性別有關(guān)?
(2)經(jīng)過多次測試后發(fā)現(xiàn),甲每次解答一道物理題所用的時間為5﹣8分鐘,乙每次解答一道物理題所用的時間為6﹣8分鐘,現(xiàn)甲、乙解同一道物理題,求甲比乙先解答完的概率;
(3)現(xiàn)從選擇做物理題的8名女生中任意選取兩人,對他們的解答情況進行全程研究,記甲、乙兩女生被抽到的人數(shù)為X,求X的分布列和數(shù)學(xué)期望. 附表及公式:

P(K2k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

K2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),角的終邊經(jīng)過點.若的圖象上任意兩點,且當時,的最小值為.

(1) 的值;

(2)求函數(shù)上的單調(diào)遞減區(qū)間;

(3)當時,不等式恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點A(﹣1,0),B(1,0)為雙曲線 =1(a>0,b>0)的左右頂點,點M在雙曲線上,△ABM為等腰三角形,且頂角為120°,則該雙曲線的標準方程為(
A.x2 =1
B.x2 =1
C.x2﹣y2=1
D.x2 =1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正四面體ABCD中,M是棱AD的中點,O是點A在底面BCD內(nèi)的射影,則異面直線BM與AO所成角的余弦值為(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案