【題目】已知函數(shù)的圖象經(jīng)過(guò)點(diǎn),且在點(diǎn)處的切線方程為.
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)區(qū)間
【答案】
【解析】
(1)求出導(dǎo)函數(shù),題意說(shuō)明,,,由此可求得;
(2)解不等式得增區(qū)間,解不等式得減區(qū)間.
(1)∵f(x)的圖象經(jīng)過(guò)P(0,2),∴d=2,
∴f(x)=x3+bx2+ax+2,f'(x)=3x2+2bx+a.
∵點(diǎn)M(﹣1,f(﹣1))處的切線方程為6x﹣y+7=0
∴f'(x)|x=﹣1=3x2+2bx+a|x=﹣1=3﹣2b+a=6①,
還可以得到,f(﹣1)=y=1,即點(diǎn)M(﹣1,1)滿足f(x)方程,得到﹣1+b﹣a+2=1②
由①、②聯(lián)立得b=a=﹣3 故所求的解析式是f(x)=x3﹣3x2﹣3x+2.
(2)f'(x)=3x2﹣6x﹣3.令3x2﹣6x﹣3=0,即x2﹣2x﹣1=0.解得x1=1- ,x2=1+.
當(dāng)x<1-,或x>1+時(shí),f'(x)>0;當(dāng)1-<x<1+時(shí),f'(x)<0.
故f(x)的單調(diào)增區(qū)間為(﹣∞,1﹣),(1+,+∞);單調(diào)減區(qū)間為(1﹣,1+)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 的長(zhǎng)軸長(zhǎng)為,且橢圓與圓: 的公共弦長(zhǎng)為.
(1)求橢圓的方程.
(2)經(jīng)過(guò)原點(diǎn)作直線(不與坐標(biāo)軸重合)交橢圓于, 兩點(diǎn), 軸于點(diǎn),點(diǎn)在橢圓上,且,求證: , , 三點(diǎn)共線..
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖1所示,在邊長(zhǎng)為12的正方形,中,,且,分別交于點(diǎn),將該正方形沿,折疊,使得與重合,構(gòu)成如圖2 所示的三棱柱,在該三棱柱底邊上有一點(diǎn),滿足; 請(qǐng)?jiān)趫D2 中解決下列問(wèn)題:
(I)求證:當(dāng)時(shí),//平面;
(Ⅱ)若直線與平面所成角的正弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,圓的極坐標(biāo)方程為.
(1)求直線的普通方程與圓的直角坐標(biāo)方程;
(2)設(shè)動(dòng)點(diǎn)在圓上,動(dòng)線段的中點(diǎn)的軌跡為,與直線交點(diǎn)為,且直角坐標(biāo)系中,點(diǎn)的橫坐標(biāo)大于點(diǎn)的橫坐標(biāo),求點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方體的棱長(zhǎng)為2,則以下四個(gè)命題中錯(cuò)誤的是
A. 直線與為異面直線 B. 平面
C. D. 三棱錐的體積為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:橢圓的頂點(diǎn)為,左右焦點(diǎn)分別為,,
(1)求橢圓的方程;
(2)過(guò)右焦點(diǎn)的直線與橢圓相交于兩點(diǎn),試探究在軸上是否存在定點(diǎn),使得為定值?若存在求出點(diǎn)的坐標(biāo),若不存在請(qǐng)說(shuō)明理由?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知傾斜角為的直線經(jīng)過(guò)拋物線:的焦點(diǎn),與拋物線相交于、兩點(diǎn),且.
(Ⅰ)求拋物線的方程;
(Ⅱ)過(guò)點(diǎn)的兩條直線、分別交拋物線于點(diǎn)、和、,線段和的中點(diǎn)分別為、.如果直線與的斜率之積等于1,求證:直線經(jīng)過(guò)一定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),以軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為:.
(1)若曲線參數(shù)方程為:(為參數(shù)),求曲線的直角坐標(biāo)方程和曲線的普通方程;
(2)若曲線參數(shù)方程為:(為參數(shù)),,且曲線與曲線交點(diǎn)分別為,,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,銳角的頂點(diǎn)為坐標(biāo)原點(diǎn),始邊為軸的正半軸,終邊與單位圓的交點(diǎn)分別為.已知點(diǎn)的橫坐標(biāo)為,點(diǎn)的縱坐標(biāo)為.
(1)求的值;
(2)求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com