給出下面類比推理命題(其中Q為有理數(shù)集,R為實數(shù)集,C為復(fù)數(shù)集):
①“若a,b∈R,則a-b=0⇒a=b”,類比推出“若a,b∈C,則a-b=0⇒a=b”;
②“若a,b,c,d∈R,則復(fù)數(shù)a+bi=c+di⇒a=c,b=d”,類比推出,“若a,b,c,d∈Q,則a+b=c+d⇒a=c,b=d”;
③“若a,b∈R,則a-b>0⇒a>b”,類比推出“若a,b∈C,則a-b>0⇒a>b”;
④“若x∈R,則|x|<1⇒-1<x<1”,類比推出“若z∈C,則|z|<1⇒-1<z<1”.
其中類比正確的為(  )
A.①②B.①④C.①②③D.②③④
A
對于③,“若a,b∈C,則a-b>0⇒a>b”是錯誤的,如a=2+i,b=1+i,則a-b=1>0,但2+i>1+i不正確;對于④,“若z∈C,則|z|<1⇒-1<z<1”是錯誤的,如y=i,|y|=<1,但-1<i<1是不成立的.故選A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

輸入p=0.8,執(zhí)行程序框圖,則輸出的n值是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

將演繹推理:“上是減函數(shù)”恢復(fù)成完全的三段論,其中大前提是        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知“整數(shù)對”按如下規(guī)律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,則第60個“整數(shù)對”是(  )
A.(7,5)B.(5,7)C.(2,10)D.(10,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

1955年,印度數(shù)學(xué)家卡普耶卡(D.R.Kaprekar)研究了對四位自然數(shù)的一種交換:任給出四位數(shù),用的四個數(shù)字由大到小重新排列成一個四位數(shù)m,再減去它的反序數(shù)n(即將的四個數(shù)字由小到大排列,規(guī)定反序后若左邊數(shù)字有0,則將0去掉運算,比如0001,計算時按1計算),得出數(shù),然后繼續(xù)對重復(fù)上述變換,得數(shù),…,如此進(jìn)行下去,卡普耶卡發(fā)現(xiàn),無論是多大的四位數(shù),只要四個數(shù)字不全相同,最多進(jìn)行k次上述變換,就會出現(xiàn)變換前后相同的四位數(shù)t(這個數(shù)稱為Kaprekar變換的核).通過研究10進(jìn)制四位數(shù)2014可得Kaprekar變換的核為             .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)的三邊長分別為,的面積為,內(nèi)切圓半徑為,則;類比這個結(jié)論可知:四面體的四個面的面積分別為,內(nèi)切球的半徑為,四面體的體積為,則         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下面是按照一定規(guī)律畫出的一列“樹型”圖:

設(shè)第個圖有個樹枝,則之間的關(guān)系是    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知:,.
由以上兩式,可以類比得到:__________________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

觀察等式:,,.照此規(guī)律,對于一般的角,有等式           .

查看答案和解析>>

同步練習(xí)冊答案