精英家教網 > 高中數學 > 題目詳情
以雙曲線
x2
4
-
y2
5
=1
的中心為頂點,且以該雙曲線的右焦點為焦點的拋物線方程是
 
分析:由題意知拋物線的頂點為(0,0),焦點為(3,0),所以拋物線方程.
解答:解:雙曲線
x2
4
-
y2
5
=1
的中心為O(0,0),
該雙曲線的右焦點為F(3,0),
∴拋物線的頂點為(0,0),
焦點為(3,0),
∴p=6,
∴拋物線方程是)y2=12x.
答案:y2=12x.
點評:本題考查圓錐曲線的基本性質和應用,解題時要注意公式的靈活運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

以雙曲線-3x2+y2=12的焦點為頂點,頂點為焦點的橢圓的方程是( 。
A、
x2
16
+
y2
12
=1
B、
x2
16
+
y2
4
=1
C、
x2
12
+
y2
16
=1
D、
x2
4
+
y2
16
=1

查看答案和解析>>

科目:高中數學 來源: 題型:

若以雙曲線
x24
-y2=1的右頂點為圓心的圓恰與雙曲線的漸近線相切,則圓的標準方程是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

以雙曲線
x2
4
-y2=1
的中心為頂點,左焦點為焦點的拋物線方程是(  )
A、y2=-2
3
x
B、y2=-2
5
x
C、y2=-4
3
x
D、y2=-4
5
x

查看答案和解析>>

科目:高中數學 來源: 題型:

以雙曲線
x2
4
-
y2
5
=1
的左焦點為焦點的拋物線標準方程是
y2=-12x
y2=-12x

查看答案和解析>>

科目:高中數學 來源: 題型:

求以橢圓
x24
+y2=1
的焦點為頂點,以橢圓的頂點為焦點的雙曲線方程.

查看答案和解析>>

同步練習冊答案