已知雙曲線的左右焦點(diǎn)分別為,為雙曲線的離心率,P是雙曲線右支上的點(diǎn),的內(nèi)切圓的圓心為I,過(guò)作直線PI的垂線,垂足為B,則OB=

A.a(chǎn)                B.b                C.              D.

 

【答案】

A

【解析】

試題分析:根據(jù)題意,利用切線長(zhǎng)定理,再利用雙曲線的定義,把,轉(zhuǎn)化為,從而求得點(diǎn)H的橫坐標(biāo).再在三角形PCF2中,由題意得,它是一個(gè)等腰三角形,從而在三角形中,利用中位線定理得出OB,從而解決問(wèn)題.

解:由題意知:(-c,0)、(c,0),內(nèi)切圓與x軸的切點(diǎn)是點(diǎn)A,作圖

,及圓的切線長(zhǎng)定理知,

,設(shè)內(nèi)切圓的圓心橫坐標(biāo)為x,

則|(x+c)-(x-c)|=2a,∴x=a,在三角形中,由題意得,它是一個(gè)等腰三角形,PC=PF2,

∴在三角形中,有:OB= =-PC)=-)=×2a=a.故選A.

考點(diǎn):雙曲線的定義、切線長(zhǎng)定理

點(diǎn)評(píng):本題考查雙曲線的定義、切線長(zhǎng)定理.解答的關(guān)鍵是充分利用三角形內(nèi)心的性質(zhì).屬于基礎(chǔ)題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的左右焦點(diǎn)是F1,F(xiàn)2,設(shè)P是雙曲線右支上一點(diǎn),
F1F2
F1P
上的投影的大小恰好為|
F1P
|
且它們的夾角為
π
6
,則雙曲線的離心率e為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的左右焦點(diǎn)分別為F1、F2,點(diǎn)P在雙曲線的右支上,且|PF1|=4|PF2|,則此雙曲線的離心率e的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年天津市高三第四次月考理科數(shù)學(xué)試卷(解析版) 題型:填空題

已知雙曲線的左右焦點(diǎn)為,P為雙曲線右支上

的任意一點(diǎn),若的最小值為8a,則雙曲線的離心率的取值范圍是        。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆湖北省四校高二下學(xué)期期中文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知雙曲線的左右焦點(diǎn)分別為為左支上一點(diǎn),若的最小值為,則雙曲線離心率的取值范圍為(     )

A、                      B、               C、            D、

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆福建省三明市高三第一學(xué)期測(cè)試?yán)砜茢?shù)學(xué)試卷 題型:填空題

已知雙曲線的左右焦點(diǎn)分別是,點(diǎn)是雙曲線右支上一點(diǎn),且,則三角形的面積等于     

 

查看答案和解析>>

同步練習(xí)冊(cè)答案