【題目】考察正方體6個(gè)面的中心,甲從這6個(gè)點(diǎn)中任意選兩個(gè)點(diǎn)連成直線,乙也從這6個(gè)點(diǎn)中任意選兩個(gè)點(diǎn)連成直線,則所得的兩條直線相互平行但不重合的概率等于( ).
A.B.C.D.
【答案】D
【解析】
先用組合數(shù)公式求出甲乙從這6個(gè)點(diǎn)中任意選兩個(gè)點(diǎn)連成直線的條數(shù)共有,再用分步計(jì)數(shù)原理求出甲乙從中任選一條共有225種,利用正八面體找出相互平行但不重合共有共12對(duì),代入古典概型的概率公式求解.
解:甲從這6個(gè)點(diǎn)中任意選兩個(gè)點(diǎn)連成直線,共有條,乙也從這6個(gè)點(diǎn)中任意選兩個(gè)點(diǎn)連成直線,
共有條,甲乙從中任選一條共有種不同取法,
因正方體6個(gè)面的中心構(gòu)成一個(gè)正八面體,有六對(duì)相互平行但不重合的直線,則甲乙兩人所得直線相互平行但不重合共有12對(duì),
這是一個(gè)古典概型,所以所求概率為,
故選:D .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有人玩擲硬幣走跳棋的游戲,已知硬幣出現(xiàn)正反面為等可能性事件,棋盤上標(biāo)有第0站,第1站,第2站,……,第100站.一枚棋子開始在第0站,棋手每擲一次硬幣,棋子向前跳動(dòng)一次,若擲出正面,棋向前跳一站(從k到),若擲出反面,棋向前跳兩站(從k到),直到棋子跳到第99站(勝利大本營(yíng))或跳到第100站(失敗集中營(yíng))時(shí),該游戲結(jié)束.設(shè)棋子跳到第n站概率為.
(1)求,,的值;
(2)求證:,其中,;
(3)求及的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用數(shù)學(xué)歸納法證明:
(1);
(2);
(3)設(shè),證明:;
(4)是13的倍數(shù);
(5),證明能被整除.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四位同學(xué)參加三項(xiàng)不同的競(jìng)賽.
(1)每位同學(xué)必須參加一項(xiàng),有幾種不同結(jié)果?
(2)每項(xiàng)競(jìng)賽只有且必須有一位同學(xué)參加,有幾種不同結(jié)果?
(3)每位同學(xué)最多參加一項(xiàng),且每項(xiàng)競(jìng)賽只許有一位同學(xué)參加,有幾種不同結(jié)果?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),向量,,且.
(1)求點(diǎn)的軌跡的方程;
(2)過點(diǎn)作直線交曲線于,兩點(diǎn)(在,之間).設(shè),直線的傾斜角,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD與BC是四面體ABCD中互相垂直的棱,BC=2. 若AD=2c,且AB+BD=AC+CD=2a,其中a、c為常數(shù),則四面體ABCD的體積的最大值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某航運(yùn)公司用300萬元買回客船一艘,此船投入營(yíng)運(yùn)后,毎月需開支燃油費(fèi)、維修費(fèi)、員工工資,已知每月燃油費(fèi)7000元,第個(gè)月的維修費(fèi)和工資支出為元.
(1)設(shè)月平均消耗為元,求與(月)的函數(shù)關(guān)系;
(2)投入營(yíng)運(yùn)第幾個(gè)月,成本最低?(月平均消耗最小)
(3)若第一年純收入50萬元(已扣除消耗),以后每年純收入以5%遞減,則多少年后可收回成本?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=n﹣5an﹣85,n∈N*
(1)證明:{an﹣1}是等比數(shù)列;
(2)求數(shù)列{Sn}的通項(xiàng)公式.請(qǐng)指出n為何值時(shí),Sn取得最小值,并說明理由?(參考數(shù)據(jù)15=﹣14.85)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線E:y2=2px(p>0)的焦點(diǎn)為F,以F為圓心,3p為半徑的圓交拋物線E于P,Q兩點(diǎn),以線段PF為直徑的圓經(jīng)過點(diǎn)(0,﹣1),則點(diǎn)F到直線PQ的距離為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com