【題目】如圖,在三棱錐中,平面平面為等邊三角形,,分別為,的中點(diǎn).

(1)求證:平面;

(2)求證:平面平面;

(3)求三棱錐的體積.

【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3).

【解析】試題分析:()利用三角形的中位線(xiàn)得出OM∥VB,利用線(xiàn)面平行的判定定理證明VB∥平面MOC;()證明OC⊥平面VAB,即可證明平面MOC⊥平面VAB;()利用等體積法求三棱錐A-MOC的體積即可

試題解析:()證明:∵OM分別為AB,VA的中點(diǎn),

∴OM∥VB,

∵VB平面MOC,OM平面MOC,

∴VB∥平面MOC;

)證明:∵AC=BC,OAB的中點(diǎn),

∴OC⊥AB,

平面VAB⊥平面ABC,平面ABC∩平面VAB=AB,且OC平面ABC,

∴OC⊥平面VAB,

∵OC平面MOC,

平面MOC⊥平面VAB

)在等腰直角三角形中,,

所以.

所以等邊三角形的面積.

又因?yàn)?/span>平面,

所以三棱錐的體積等于.

又因?yàn)槿忮F的體積與三棱錐的體積相等,

所以三棱錐的體積為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【題目】已知拋物線(xiàn)C:y2=2x,過(guò)點(diǎn)(2,0)的直線(xiàn)l交C于A,B兩點(diǎn),圓M是以線(xiàn)段AB為直徑的圓.

(1)證明:坐標(biāo)原點(diǎn)O在圓M上;

(2)設(shè)圓M過(guò)點(diǎn)P(4,-2),求直線(xiàn)l與圓M的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)α,β為兩個(gè)不同平面,a,b為兩條不同直線(xiàn),下列選項(xiàng)正確的是(  )

①若aα,bα,則ab

②若aααβ,則aβ

③若αβ,aβ,則

④若aα,則a與平面α內(nèi)的無(wú)數(shù)條直線(xiàn)平行

⑤若ab,則a平行于經(jīng)過(guò)b的所有平面

A.①②B.③④C.②④D.②⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某幾何體的三視圖中,俯視圖是邊長(zhǎng)為2的正三角形,正視圖和左視圖分別為直角梯形和直角三角形,則該幾何體的體積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《漢字聽(tīng)寫(xiě)大會(huì)》不斷創(chuàng)收視新高,為了避免“書(shū)寫(xiě)危機(jī)”,弘揚(yáng)傳統(tǒng)文化,某市大約10萬(wàn)名市民進(jìn)行了漢字聽(tīng)寫(xiě)測(cè)試.現(xiàn)從某社區(qū)居民中隨機(jī)抽取50名市民的聽(tīng)寫(xiě)測(cè)試情況.發(fā)現(xiàn)被測(cè)試市民正確書(shū)寫(xiě)漢字的個(gè)數(shù)全部在160184之間,將測(cè)試結(jié)果按如下方式分成六組:第1,第2,…,第6,如圖是按上述分組方法得到的頻率分布直方圖.

(1)試估計(jì)該市市民正確書(shū)寫(xiě)漢字的個(gè)數(shù)的平均數(shù)與中位數(shù);

(2)已知第4組市民中有3名男性,組織方要從第4組中隨機(jī)抽取2名市民組成弘揚(yáng)傳統(tǒng)文化宣傳隊(duì),求至少有1名女性市民的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)是定義在上的奇函數(shù),且.

1)確定的解析式;

2)判斷上的單調(diào)性,并用定義證明;

3)解關(guān)于的不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)家歐拉在年提出定理:三角形的外心、重心、垂心依次位于同一直線(xiàn)上,且重心到外心的距離是重心到垂心距離的一半,這條直線(xiàn)后人稱(chēng)之為三角形的歐拉線(xiàn).已知的頂點(diǎn)、,若其歐拉線(xiàn)方程為,則頂點(diǎn)的坐標(biāo)是(

參考公式:若的頂點(diǎn)、、的坐標(biāo)分別是、、,則該的重心的坐標(biāo)為.

A.B.,

C.,D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在上的函數(shù),有下列說(shuō)法:

1)函數(shù)滿(mǎn)足則函數(shù)在上不是單調(diào)減函數(shù);

2)對(duì)任意的 函數(shù)滿(mǎn)足則函數(shù)在上是單調(diào)增函數(shù);

3)函數(shù)滿(mǎn)足則函數(shù)是偶函數(shù);

4)函數(shù)滿(mǎn)足則函數(shù)不是奇函數(shù).

其中,正確的說(shuō)法是________(填寫(xiě)相應(yīng)的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水產(chǎn)品經(jīng)銷(xiāo)商銷(xiāo)售某種鮮魚(yú),售價(jià)為每公斤元,成本為每公斤元.銷(xiāo)售宗旨是當(dāng)天進(jìn)貨當(dāng)天銷(xiāo)售.如果當(dāng)天賣(mài)不出去,未售出的全部降價(jià)處理完,平均每公斤損失元.根據(jù)以往的銷(xiāo)售情況,按,,進(jìn)行分組,得到如圖所示的頻率分布直方圖.

(1)根據(jù)頻率分布直方圖計(jì)算該種鮮魚(yú)日需求量的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間中點(diǎn)值代表);

(2)該經(jīng)銷(xiāo)商某天購(gòu)進(jìn)了公斤這種鮮魚(yú),假設(shè)當(dāng)天的需求量為公斤,利潤(rùn)為元.求關(guān)于的函數(shù)關(guān)系式,并結(jié)合頻率分布直方圖估計(jì)利潤(rùn)不小于元的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案