【題目】為了解籃球愛好者小李的投籃命中率與打籃球時間之間的關(guān)系,下表記錄了小李某月1號到5號每天打籃球時間x單位:小時)與當(dāng)天投籃命中率y之間的關(guān)系:

時間x

1

2

3

4

5

命中率y

0.4

0.5

0.6

0.6

0.4


(1)求小李這5天的平均投籃命中率;
(2)用線性回歸分析的方法,預(yù)測小李該月6號打6小時籃球的投籃命中率.

【答案】
(1)解:小李這5天的平均投籃命中率 = =0.5
(2)解: = = =0.5;

= =3, =0.01,

a=0.5﹣0.01×3=0.47,

所以回歸方程為:y=0.01x+0.47,

所以當(dāng)x=6時,y=0.47+0.01×6=0.53


【解析】(1)利用提供的命中率,可求李這5天的平均投籃命中率;(2)先求出線性回歸方程,再令x=6,即可預(yù)測小李該月6號打6小時籃球的投籃命中率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時,討論的單調(diào)性;

(2)若在點處的切線方程為,若對任意的

恒有,求的取值范圍(是自然對數(shù)的底數(shù))。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等比數(shù)列{an}中,已知a1=2,a4=16.
(1)求數(shù)列{an}的通項公式an
(2)若a3 , a5分別是等差數(shù)列{bn}的第4項和第16項,求數(shù)列{bn}的通項公式及前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在(0, )上的函數(shù)f(x),f′(x)是它的導(dǎo)函數(shù),且恒有f(x)>f′(x)tanx成立,則(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的定義域為R,且對任意的x,y∈R有f(x+y)=f(x)+f(y)當(dāng)時,,f(1)=1

(1)求f(0),f(3)的值;

(2)判斷f(x)的單調(diào)性并證明;

(3)若f(4x-a)+f(6+2x+1)>2對任意x∈R恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為實數(shù),設(shè)函數(shù),設(shè)

(1)求的取值范圍,并把表示為的函數(shù);

(2)若恒成立,求實數(shù)的取值范圍;

(3)若存在使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 是⊙的直徑,點的中點, 平面,

)求證

)若點是平面內(nèi)一動點,且,請在平面內(nèi),建立適當(dāng)?shù)淖鴺?biāo)系,求出點的軌跡方程,并求出點內(nèi)的軌跡長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論:

①y=πx是指數(shù)函數(shù)

②函數(shù)既是偶函數(shù)又是奇函數(shù)

③函數(shù)的單調(diào)遞減區(qū)間是

④在增函數(shù)與減函數(shù)的定義中,可以把任意兩個自變量”改為“存在兩個自變量

表示同一個集合

⑥所有的單調(diào)函數(shù)都有最值

其中正確命題的序號是_______________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)上的減函數(shù),,且 f [ f(x)]=16x-3.

(1)求;

(2)若在(-2,3)單調(diào)遞增,求實數(shù)的取值范圍;

(3)當(dāng)時,有最大值1,求實數(shù)的值.

查看答案和解析>>

同步練習(xí)冊答案