【題目】已知數(shù)列{an}滿足a1=2,an+1= (n∈N+).
(1)計(jì)算a2 , a3 , a4 , 并猜測出{an}的通項(xiàng)公式;
(2)用數(shù)學(xué)歸納法證明(1)中你的猜測.

【答案】
(1)解:a1=2,an+1=

當(dāng)n=1時,a2= = ,

當(dāng)n=2時,a3= =0,

當(dāng)n=4時,a4= =﹣

∴猜想an= ,(n∈N+


(2)解:①當(dāng)n=1時,a1= =2,等式成立,

②假設(shè)n=k時,猜想成立,即ak=

那么當(dāng)n=k+1時,ak+1= = = ,等式成立,

由①②可知,an= ,(n∈N+).


【解析】(1)由an+1= ,分別令n=1,2,3,能求出a2 , a3 , a4的值,根據(jù)前四項(xiàng)的值,總結(jié)規(guī)律能猜想出an的表達(dá)式.(2)當(dāng)n=1時,驗(yàn)證猜相成立;再假設(shè)n=k時,猜想成立,由此推導(dǎo)出當(dāng)n=k+1時猜想成立,由此利用數(shù)學(xué)歸納法能證明猜想成立.
【考點(diǎn)精析】本題主要考查了數(shù)列的通項(xiàng)公式和數(shù)學(xué)歸納法的定義的相關(guān)知識點(diǎn),需要掌握如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項(xiàng)公式;數(shù)學(xué)歸納法是證明關(guān)于正整數(shù)n的命題的一種方法才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)當(dāng)時,若方程有兩個相異實(shí)根,且,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,an+1+(﹣1)nan=2n,其前n項(xiàng)和為Sn , 則 =

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=log2(ax2﹣2x+2)的定義域?yàn)镼.
(1)若a>0且[2,3]∩Q=,求實(shí)數(shù)a的取值范圍;
(2)若[2,3]Q,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓具有性質(zhì):若M,N是橢圓C: =1(a>b>0且a,b為常數(shù))上關(guān)于y軸對稱的兩點(diǎn),P是橢圓上的左頂點(diǎn),且直線PM,PN的斜率都存在(記為kPM , kPN),則kPMkPN= .類比上述性質(zhì),可以得到雙曲線的一個性質(zhì),并根據(jù)這個性質(zhì)得:若M,N是雙曲線C: =1(a>0,b>0)上關(guān)于y軸對稱的兩點(diǎn),P是雙曲線C的左頂點(diǎn),直線PM,PN的斜率都存在(記為kPM , kPN),雙曲線的離心率e= ,則kPMkPN等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)D為△ABC的邊BC上一點(diǎn), =3 ,En(n∈N+)為邊AC上的點(diǎn),滿足 = an+1 , =(4an+3) ,其中實(shí)數(shù)列{an}中an>0,a1=1,則{an}的通項(xiàng)公式為(
A.32n1﹣2
B.2n﹣1
C.4n﹣2
D.24n1﹣1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知O為△ABC的外心,角A、B、C的對邊分別為a、b、c.
(1)若5 +4 +3 = ,求cos∠BOC的值;
(2)若 = ,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax﹣lnx(a∈R).
(1)當(dāng)a=1時,求f(x)的最小值;
(2)若存在x∈[1,3],使 +lnx=2成立,求a的取值范圍;
(3)若對任意的x∈[1,+∞),有f(x)≥f( )成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在下列函數(shù)中,最小值為2的是(
A.y=2x+2x
B.y=sinx+ (0<x<
C.y=x+
D.y=log3x+ (1<x<3)

查看答案和解析>>

同步練習(xí)冊答案