【題目】某公司為招聘新員工設(shè)計(jì)了一個面試方案:應(yīng)聘者從6道備選題中一次性隨機(jī)抽取3道題,按照題目要求獨(dú)立完成.規(guī)定:至少正確完成其中2道題的便可通過.已知6道備選題中應(yīng)聘者甲有4道題能正確完成,2道題不能完成;應(yīng)聘者乙每題正確完成的概率都是 ,且每題正確完成與否互不影響.
(Ⅰ)分別求甲、乙兩人正確完成面試題數(shù)的分布列,并計(jì)算其數(shù)學(xué)期望;
(Ⅱ)請分析比較甲、乙兩人誰的面試通過的可能性大?

【答案】解:(Ⅰ)設(shè)甲正確完成面試的題數(shù)為ξ,則ξ的取值分別為1,2,3.

P(ξ=1)= = ;P(ξ=2)= = ;P(ξ=3)= =

考生甲正確完成題數(shù)ξ的分布列為

ξ

1

2

3

P

Eξ=1× +2× +3× =2.

設(shè)乙正確完成面試的題數(shù)為η,則η取值分別為0,1,2,3.

P(η=0)= ;P(η=1)= = ,P(η=2)= = ,P(η=3)= =

考生乙正確完成題數(shù)η的分布列為:

η

0

1

2

3

P

Eη=0× +1× +2× +3× =2.

(Ⅱ)因?yàn)镈ξ= = ,

Dη=npq=

所以Dξ<Dη.

綜上所述,從做對題數(shù)的數(shù)學(xué)期望考查,兩人水平相當(dāng);從做對題數(shù)的方差考查,甲較穩(wěn)定;從至少完成2道題的概率考查,甲獲得面試通過的可能性大


【解析】(Ⅰ)確定甲、乙兩人正確完成面試題數(shù)的取值,求出相應(yīng)的概率,即可得到分布列,并計(jì)算其數(shù)學(xué)期望;(Ⅱ)確定Dξ<Dη,即可比較甲、乙兩人誰的面試通過的可能性大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+2x﹣2﹣a(a0),

(1)若a=﹣1,求函數(shù)的零點(diǎn);

(2)若函數(shù)在區(qū)間(0,1]上恰有一個零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx+ ax2﹣2x存在單調(diào)遞減區(qū)間,則實(shí)數(shù)a的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某紡織廠訂購一批棉花,其各種長度的纖維所占的比例如下表所示:

(1)請估計(jì)這批棉花纖維的平均長度與方差.

(2)如果規(guī)定這批棉花纖維的平均長度為4.90厘米,方差不超過1.200,兩者允許誤差均不超過0.10視為合格產(chǎn)品.請你估計(jì)這批棉花的質(zhì)量是否合格?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某個服裝店經(jīng)營某種服裝,在某周內(nèi)獲純利y()與該周每天銷售這些服裝件數(shù)x之間有如下一組數(shù)據(jù):

x

3

4

5

6

7

8

9

y

66

69

73

81

89

90

91

已知280, yi3 487,

(1);

(2)求純利y與每天銷售件數(shù)x之間的回歸直線方程;

(3)每天多銷售1件,純利y增加多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有如下性質(zhì)如果常數(shù),那么該函數(shù)上是減函數(shù)上是增函數(shù)

(1)用函數(shù)單調(diào)性定義來證明上的單調(diào)性;

(2)已知, 求函數(shù)的值域;

(3)對于(2)中的函數(shù)和函數(shù)若對任意,總存在使得成立,求實(shí)數(shù)的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某購物網(wǎng)站在2017年11月開展“全部6折”促銷活動,在11日當(dāng)天購物還可以再享受“每張訂單金額(6折后〕滿300元時可減免100元”.小淘在11日當(dāng)天欲購入原價(jià)48元(單價(jià))的商品共42件,為使花錢總數(shù)最少,他最少需要下的訂單張數(shù)為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣ax﹣aln(x﹣1)(a∈R)
(1)當(dāng)a=1時,求函數(shù)f(x)的最值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分別是AC、AD上的動點(diǎn),且

(1)求證:不論 為何值,總有平面BEF⊥平面ABC;
(2)當(dāng)λ為何值時,平面BEF⊥平面ACD ?

查看答案和解析>>

同步練習(xí)冊答案