【題目】如圖,在四棱柱中,側(cè)面底面,,底面為直角梯形,其中,,,O為中點(diǎn).
(1)求證:平面;
(2)求凸多面體的體積.
【答案】(1)證明見(jiàn)解析(2)
【解析】
(1)連接、、、,推導(dǎo)出四邊形為平行四邊形,從而,由此能證明平面.
(2)推導(dǎo)出,從而底面,再證明底面,又
,則凸多面體的體積可求.
(1)證明:如圖,連接、、、,
則四邊形為正方形,所以,
所以四邊形為平行四邊形,
所以,
又平面,平面,
所以平面
(2)解法一:因?yàn)?/span>,O為中點(diǎn),所以,
又側(cè)面底面,所以底面
因?yàn)?/span>,所以是等腰直角三角形,所以.
易證,又側(cè)面底面,所以底面
解法二:因?yàn)?/span>,O為中點(diǎn),所以,
又側(cè)面底面,所以底面
因?yàn)?/span>且,所以且
所以四邊形為平行四邊形,又
所以四邊形為矩形
作于點(diǎn)E,因?yàn)?/span>底面,所以,
且,所以面
所以四棱錐
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)),以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.
(1)求圓的極坐標(biāo)方程;
(2)設(shè)曲線(xiàn)的極坐標(biāo)方程為,曲線(xiàn)的極坐標(biāo)方程為,求三條曲線(xiàn),,所圍成圖形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一個(gè)不透明的袋子,裝有4個(gè)大小形狀完全相同的小球,球上分別標(biāo)有數(shù)字1,2,3,4.現(xiàn)按如下兩種方式隨機(jī)取球兩次,每種方式中第1次取到球的編號(hào)記為,第2次取到球的編號(hào)記為.
(1)若逐個(gè)不放回地取球,求是奇數(shù)的概率;
(2)若第1次取完球后將球再放回袋中,然后進(jìn)行第2次取球,求直線(xiàn)與雙曲線(xiàn)有公共點(diǎn)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校針對(duì)校食堂飯菜質(zhì)量開(kāi)展問(wèn)卷調(diào)查,提供滿(mǎn)意與不滿(mǎn)意兩種回答,調(diào)查結(jié)果如下表(單位:人):
學(xué)生 | 高一 | 高二 | 高三 |
滿(mǎn)意 | 500 | 600 | 800 |
不滿(mǎn)意 | 300 | 200 | 400 |
(1)求從所有參與調(diào)查的人中任選1人是高三學(xué)生的概率;
(2)從參與調(diào)查的高三學(xué)生中,用分層抽樣的方法抽取6人,在這6人中任意選取2人,求這兩人對(duì)校食堂飯菜質(zhì)量都滿(mǎn)意的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱中, 平面,,以為鄰邊作平行四邊形,連接.
(1)求證:平面;
(2)若二面角為.
求證:平面平面;
求直線(xiàn)與平面所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】袋子中有四張卡片,分別寫(xiě)有“瓷、都、文、明”四個(gè)字,有放回地從中任取一張卡片,將三次抽取后“瓷”“都”兩個(gè)字都取到記為事件,用隨機(jī)模擬的方法估計(jì)事件發(fā)生的概率.利用電腦隨機(jī)產(chǎn)生整數(shù)0,1,2,3四個(gè)隨機(jī)數(shù),分別代表“瓷、都、文、明”這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示取卡片三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):
232 | 321 | 230 | 023 | 123 | 021 | 132 | 220 | 001 |
231 | 130 | 133 | 231 | 031 | 320 | 122 | 103 | 233 |
由此可以估計(jì)事件發(fā)生的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:()的焦距等于短軸的長(zhǎng),橢圓的右頂點(diǎn)到左焦點(diǎn)的距離為.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知直線(xiàn)l:()與橢圓C交于A、B兩點(diǎn),在y軸上是否存在點(diǎn),使得,且,若存在,求實(shí)數(shù)t的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】高鐵是一種快捷的交通工具,為我們的出行提供了極大的方便。某高鐵換乘站設(shè)有編號(hào)為①,②,③,④,⑤的五個(gè)安全出口,若同時(shí)開(kāi)放其中的兩個(gè)安全出口,疏散名乘客所需的時(shí)間如下:
安全出口編號(hào) | ①② | ②③ | ③④ | ④⑤ | ①⑤ |
疏散乘客時(shí)間(s) | 120 | 220 | 160 | 140 | 200 |
則疏散乘客最快的一個(gè)安全出口的編號(hào)是( )
A. ①B. ②C. ④D. ⑤
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,、分別是橢圓的頂點(diǎn).過(guò)坐標(biāo)原點(diǎn)的直線(xiàn)交橢圓于、兩點(diǎn),其中在第一象限.過(guò)點(diǎn)作軸的垂線(xiàn),垂足為.設(shè)直線(xiàn)的斜率為.
(1)若直線(xiàn)平分線(xiàn)段,求的值;
(2)當(dāng)時(shí),求點(diǎn)到直線(xiàn)的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com