2.若z=4+3i,則$\frac{\overline z}{|z|}$=$\frac{4}{5}$-$\frac{3}{5}$i.

分析 利用共軛復數(shù)的定義、模的計算公式即可得出.

解答 解:z=4+3i,則$\frac{\overline z}{|z|}$=$\frac{4-3i}{\sqrt{{4}^{2}+{3}^{2}}}$=$\frac{4}{5}$-$\frac{3}{5}$i.
故答案為:$\frac{4}{5}$-$\frac{3}{5}$i.

點評 本題考查了共軛復數(shù)的定義、模的計算公式,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.已知集合A={x|0<x<3},B={x|x2-7x+10<0}
(1)求集合B及A∩B;
(2)已知集合C={x|a<x<a+1},若C⊆B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知f(x)=ax-lnx,其中x∈(0,e](e是自然對數(shù)的底數(shù)),
(1)當a=1時,求f(x)的單調(diào)區(qū)間、極值;
(2)是否存在a∈R,使f(x)的最小值是3,若存在求出a的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=ax2-(a+3)x-a.
(1)當a=1時,求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(2)若對任意x1,x2∈(0,+∞),(x1-x2)(f(x1)-f(x2))<0恒成立,求實數(shù)a的取值范圍;
(3)當a>0時,若y=f(x)在區(qū)間[0,2]上的最小值為-5,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.以直角坐標系的原點為極點,x軸正半軸為極軸建立坐標系,直線l的參數(shù)方程為:$\left\{\begin{array}{l}x=t+4\\ y=kt\end{array}\right.$(t是參數(shù),k∈R),圓C的極坐標方程為:p=4cosθ,則直線l與圓C的位置關系為相交.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.觀察下列各等式:$\frac{5}{5-4}$+$\frac{3}{3-4}$=2,$\frac{2}{2-4}$+$\frac{6}{6-4}$=2,$\frac{7}{7-4}$+$\frac{1}{1-4}$=2,$\frac{10}{10-4}$+$\frac{-2}{-2-4}$=2,依照以上各式成立的規(guī)律,得到一般性的等式為( 。
A.$\frac{n}{n-4}$+$\frac{8-n}{8-n-4}$=2B.$\frac{n+1}{n+1-4}$+$\frac{n+1+5}{n+1-4}$=2
C.$\frac{n}{n-4}$+$\frac{n}{n+4-4}$=2D.$\frac{n+1}{n+1-4}$+$\frac{n+5}{n+5-4}$=2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.如圖所示的程序框圖的算符源于我國古代的“中國剩余定理”,用N≡n(modm)表示正整數(shù)N除以正整數(shù)m后的余數(shù)為n,例如:7≡1(mod3),執(zhí)行該程序框圖,則輸出的n的值為( 。
A.19B.20C.21D.22

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.在一次公益活動中,某學校需要安排五名學生去甲乙丙丁四個地點進行活動,每個地點至少安排一個學生且每個學生只能安排一個地點,甲地受地方限制只能安排一人,A同學因離乙地較遠而不安排去乙地,則不同的分配方案的種數(shù)為( 。
A.96B.120C.132D.240

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.若函數(shù)h(x)=ax3+bx2+cx+d(a≠0)圖象的對稱中心為M(x0,h(x0)),記函數(shù)h(x)的導函數(shù)為g(x),則有g′(x0)=0,設函數(shù)f(x)=x3-3x2+2,則f($\frac{1}{2017}$)+f($\frac{2}{2017}$)+…+f($\frac{4032}{2017}$)+f($\frac{4033}{2017}$)=0.

查看答案和解析>>

同步練習冊答案