設(shè)f(x)=
ex             (x<0)
a+x        (x≥0)
當(dāng)a為何值時(shí),函數(shù)f(x)是連續(xù)的.
分析:本題可根據(jù)分段函數(shù)的基本知識(shí),對(duì)式子中各個(gè)范圍進(jìn)行分析即可.
解答:解:
lim
x→0+
f(x)=
lim
x→0+
(a+x)=a,
lim
x→0-
f(x)=
lim
x→0-
ex=1,而f(0)=a,
故當(dāng)a=1時(shí),
lim
x→0 
f(x)=f(0),
即說(shuō)明函數(shù)f(x)在x=0處連續(xù),而在x≠0時(shí),
f(x)顯然連續(xù),于是我們可判斷當(dāng)a=1時(shí),
f(x)在(-∞,+∞)內(nèi)是連續(xù)的.
點(diǎn)評(píng):本題考查分段函數(shù)的基本知識(shí),注意分段函數(shù)討論連續(xù)性,一定要討論在“分界點(diǎn)”的左、右極限,進(jìn)而斷定連續(xù)性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=ex(ax2+x+1),且曲線y=f(x)在x=1處的切線與x軸平行.
(1)求a的值,并討論f(x)的單調(diào)性;
(2)證明:當(dāng)θ∈[0,
π2
]時(shí),|f(cosθ)-f(sinθ)|<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=
ex,x≤1
f(x-1),x>1
,則f(ln3)=( 。
A、
3
e
B、ln3-1
C、e
D、3e

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=
ex(x≤0)
lnx(x>0)
,則f[f(
1
2
)]=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•寧波模擬)設(shè)f(x)=
ex(x≤0)
ln x(x>0)
,則f[f(
1
3
)]=
1
3
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=ex-ax-1
(1)若f(x)在[-∞,0]上單調(diào)遞減,在[0,+∞]上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(2)設(shè)g(x)=-x2+2x-2,在(1)的條件下,求證:g(x)的圖象恒在f(x)圖象的下方.

查看答案和解析>>

同步練習(xí)冊(cè)答案