【題目】如圖,四棱錐中,底面是邊長為2的正方形,側(cè)面底面,為上的點(diǎn),且平面
(1)求證:平面平面;
(2)當(dāng)三棱錐體積最大時(shí),求二面角的余弦值.
【答案】(1)見證明;(2).
【解析】
(1)通過側(cè)面底面,可以證明出面,這樣可以證明出
,再利用平面,可以證明出,這樣利用線面垂直的判定定理可以證明出面,最后利用面面垂直的判定定理可以證明出平面平面;
(2)利用三棱錐體積公式可得,
利用基本不等式可以求出三棱錐體積最大值,此時(shí)可以求出的長度,以點(diǎn)為坐標(biāo)原點(diǎn),以,和分別作為軸,軸和軸,建立空間直角坐標(biāo)系.求出相應(yīng)點(diǎn)的坐標(biāo),求出面的一個(gè)法向量,面的一個(gè)法向量,利用空間向量數(shù)量積的運(yùn)算公式,可以求出二面角的余弦值.
(1)證明:∵側(cè)面底面,側(cè)面底面,四邊形為正方形,∴,面,
∴面,
又面,
∴,
平面,面,
∴,
,平面,
∴面,
面,
∴平面平面.
(2),
求三棱錐體積的最大值,只需求的最大值.
令,由(1)知,,
∴,
而,
當(dāng)且僅當(dāng),即時(shí),
的最大值為.
如圖所示,分別取線段,中點(diǎn),,連接,,
以點(diǎn)為坐標(biāo)原點(diǎn),以,和分別作為軸,軸和軸,建立空間直角坐標(biāo)系.
由已知,
所以,
令為面的一個(gè)法向量,
則有,
∴
易知為面的一個(gè)法向量,
二面角的平面角為,為銳角
則.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某調(diào)查機(jī)構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不正確的是( )
注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.
A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上
B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的
C.互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營崗位的人數(shù)90后比80前多
D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)若二項(xiàng)式的展開式中存在常數(shù)項(xiàng),則的最小值為______;
(2)從6名志愿者中選出4人,分別參加兩項(xiàng)公益活動(dòng),每項(xiàng)活動(dòng)至少1人,則不同安排方案的種數(shù)為____.(用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在棱長為4的正方體中,點(diǎn)M是正方體表面上一動(dòng)點(diǎn),則下列說法正確的個(gè)數(shù)為( )
①若點(diǎn)M在平面ABCD內(nèi)運(yùn)動(dòng)時(shí)總滿足,則點(diǎn)M在平面ABCD內(nèi)的軌跡是圓的一部分;
②在平面ABCD內(nèi)作邊長為1的小正方形EFGA,點(diǎn)M滿足在平面ABCD內(nèi)運(yùn)動(dòng),且到平面的距離等于到點(diǎn)F的距離,則M在平面ABCD內(nèi)的軌跡是拋物線的一部分;
③已知點(diǎn)N是棱CD的中點(diǎn),若點(diǎn)M在平面ABCD內(nèi)運(yùn)動(dòng),且平面,則點(diǎn)M在平面內(nèi)的軌跡是線段;
④已知點(diǎn)P、Q分別是,的中點(diǎn),點(diǎn)M為正方體表面上一點(diǎn),若MP與CQ垂直,則點(diǎn)M所構(gòu)成的軌跡的周長為.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的右焦點(diǎn)與拋物線的焦點(diǎn)重合,曲線與相交于點(diǎn).
(1)求橢圓的方程;
(2)過右焦點(diǎn)的直線(與軸不重合)與橢圓交于,兩點(diǎn),線段的中點(diǎn),連接并延長交橢圓于點(diǎn)(為坐標(biāo)原點(diǎn)),求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的幾何體中,平面ABCD,四邊形ABCD為菱形,,點(diǎn)M,N分別在棱FD,ED上.
(1)若平面MAC,設(shè),求的值;
(2)若,平面AEN平面EDC所成的銳二面角為,求BE的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角三角形所在的平面與半圓弧所在平面相交于,,,分別為,的中點(diǎn), 是上異于,的點(diǎn), .
(1)證明:平面平面;
(2)若點(diǎn)為半圓弧上的一個(gè)三等分點(diǎn)(靠近點(diǎn))求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017·全國卷Ⅲ文,18)某超市計(jì)劃按月訂購一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:
最高氣溫 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天數(shù) | 2 | 16 | 36 | 25 | 7 | 4 |
以最高氣溫位于各區(qū)間的頻率估計(jì)最高氣溫位于該區(qū)間的概率.
(1)估計(jì)六月份這種酸奶一天的需求量不超過300瓶的概率;
(2)設(shè)六月份一天銷售這種酸奶的利潤為Y(單位:元).當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時(shí),寫出Y的所有可能值,并估計(jì)Y大于零的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:().
(1)若拋物線的焦點(diǎn)到準(zhǔn)線的距離為4,點(diǎn),在拋物線上,線段的中點(diǎn)為,求直線的方程;
(2)若圓以原點(diǎn)為圓心,1為半徑,直線與,分別相切,切點(diǎn)分別為,,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com