(本小題滿分12分)如圖所示,在直三棱柱ABC-A1B1C1中,AC⊥BC.

(1) 求證:平面AB1C1⊥平面AC1;

(2) 若AB1⊥A1C,求線段AC與AA1長(zhǎng)度之比;

(3) 若D是棱CC1的中點(diǎn),問(wèn)在棱AB上是否存在一點(diǎn)E,使DE∥平面AB1C1?若存在,試確定點(diǎn)E的位置;若不存在,請(qǐng)說(shuō)明理由.

 

【答案】

(1)只需證B1C1⊥平面AC1 .(2)1:1.(3)點(diǎn)E位于AB的中點(diǎn)時(shí)。

【解析】

試題分析:(1)由于ABC-A1B1C1是直三棱柱,所以B1C1⊥CC1;

又因?yàn)锳C⊥BC ,所以B1C1⊥A1C1,所以B1C1⊥平面AC1

由于B1C1平面AB1C1,從而平面AB1C1⊥平面AC1

(2)由(1)知,B1C1⊥A1C .所以,若AB1⊥A1C,則可

得:A1C⊥平面AB1C1,從而A1C⊥  AC1

由于ACC1A1是矩形,故AC與AA1長(zhǎng)度之比為1:1.

(3)點(diǎn)E位于AB的中點(diǎn)時(shí),能使DE∥平面AB1C1

證法一:設(shè)F是BB1的中點(diǎn),連結(jié)DF、EF、DE.則易證:平面DEF//平面AB1C1,從而

DE∥平面AB1C1

證法二:設(shè)G是AB1的中點(diǎn),連結(jié)EG,則易證EGDC1. 所以DE// C1G,DE∥平面AB1C1

考點(diǎn):面面垂直的判定定理;線面平行的判定定理;線面垂直的判定定理。

點(diǎn)評(píng):證明線面平行的常用方法:

①定義:若一條直線和一個(gè)平面沒(méi)有公共點(diǎn),則它們平行;

②線線平行Þ線面平行

若平面外的一條直線平行于平面內(nèi)的一條直線,則它與這個(gè)平面平行。

     

③面面平行Þ線面平行

若兩平面平行,則其中一個(gè)平面內(nèi)的任一條直線平行于另一個(gè)平面。

  

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
ON
|=6,
ON
=
5
OM
.過(guò)點(diǎn)M作MM1丄y軸于M1,過(guò)N作NN1⊥x軸于點(diǎn)N1,
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類(lèi),這三類(lèi)工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類(lèi)別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)

某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤(rùn)與投資單位是萬(wàn)元)

(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫(xiě)出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬(wàn)元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問(wèn):怎樣分配這10萬(wàn)元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬(wàn)元.

查看答案和解析>>

同步練習(xí)冊(cè)答案