18.已知集合A={x|-2<x<2},B={x|(x+1)(x-3)≤0},則A∩(∁RB)=( 。
A.(-1,2)B.(-2,-1]C.(-2,-1)D.(2,3)

分析 求出B中不等式的解集,確定B,根據(jù)全集R求出B的補集,找出A與B補集的交集即可.

解答 解:集合A={x|-2<x<2}=(-2,2),B={x|(x+1)(x-3)≤0}=[-1,3],
∴∁RB=(-∞,-1)∪(3,+∞),
∴A∩(∁RB)=(-2,-1),
故選:C.

點評 此題考查了交、并、補集的混合運算,熟練掌握各自的定義是解本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

3.已知雙曲線$\frac{x^2}{9}-\frac{y^2}{27}=1$與點M(5,3),F(xiàn)為右焦點,若雙曲線上有一點P,則$PM+\frac{1}{2}PF$的最小值為$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知點M、N、K分別為正方體ABCD-A1B1C1D1的棱AB、B1C1、DD1的中點,在正方體的所有面對角線和體對角線所在的直線中,與平面MNK平行的條數(shù)為(  )
A.6條B.7條C.8條D.9條

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)過點(1,$\frac{3}{2}$),左、右焦點為F1、F2,右頂點為A,上頂點為B,且|AB|=$\frac{\sqrt{7}}{2}$|F1F2|.
(1)求橢圓E的方程;
(2)過點M(-4,0)作斜率為k(k≠0)的直線l,交橢圓E于P、Q兩點,N為PQ中點,問是否存在實數(shù)k,使得以F1F2為直徑的圓經(jīng)過N點,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的四個頂點組成的四邊形的面積為$2\sqrt{2}$,且經(jīng)過點(1,$\frac{{\sqrt{2}}}{2}}$).
(1)求橢圓C的方程;
(2)若橢圓C的下頂點為P,如圖所示,點M為直線x=2上的一個動點,過橢圓C的右焦點F的直線l垂直于OM,且與C交于A,B兩點,與OM交于點N,四邊形AMBO和△ONP的面積分別為S1,S2.求S1S2的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.定義在R上的函數(shù)f(x),滿足f(x+1)=f(x-1),且f(x+2)=f(2-x),且f(x)在[-3,-2]上是減函數(shù),如果A,B是銳角三角形的兩個內(nèi)角,則( 。
A.f(sinA)>f(cosB)B.f(cosB)>f(sinA)C.f(sinA)>f(sinB)D.f(cosB)>f(cosA)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.設Sn為各項不相等的等差數(shù)列{an}的前n項和,已知a3a5=3a7,S3=9.
(1)求數(shù)列{an}通項公式;
(2)設Tn為數(shù)列{${\frac{1}{{{a_n}{a_{n+1}}}}}$}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知數(shù)列{an}滿足:a1=2,an+1=(${\sqrt{{a_n}-1}$+1)2+1,則a12=(  )
A.101B.122C.145D.170

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.大衍數(shù)列,來源于中國古代著作《乾坤譜》中對易傳“大衍之數(shù)五十”的推論.其前10項為:0、2、4、8、12、18、24、32、40、50.
通項公式:an=$\left\{\begin{array}{l}{\frac{{n}^{2}-1}{2},n為奇數(shù)}\\{\frac{{n}^{2}}{2},n為偶數(shù)}\end{array}\right.$       
如果把這個數(shù)列{an}排成右側形狀,并記A(m,n)表示第m行中從左向右第n個數(shù),則A(10,4)的值為3612.

查看答案和解析>>

同步練習冊答案