18.設(shè)m,n∈R,定義在區(qū)間[m,n]上函數(shù)f(x)=x2的值域是[0,4],若關(guān)于t的方程|3-|t|-$\frac{1}{4}$|-n=0恰有4個互不相等的實數(shù)解,則m+n的取值范圍是$({-2,-\frac{7}{4}})$.

分析 畫出函數(shù)y=|3-|t|-$\frac{1}{4}$|的圖象,由關(guān)于t的方程|3-|t|-$\frac{1}{4}$|-n=0恰有4個互不相等的實數(shù)解,求出n的范圍,再由定義在區(qū)間[m,n]上函數(shù)f(x)=x2的值域是[0,4],求出m值,可得答案.

解答 解:函數(shù)y=|3-|t|-$\frac{1}{4}$|的圖象如下圖所示:

若關(guān)于t的方程|3-|t|-$\frac{1}{4}$|-n=0恰有4個互不相等的實數(shù)解,
則n∈(0,$\frac{1}{4}$),
∵定義在區(qū)間[m,n]上函數(shù)f(x)=x2的值域是[0,4],
∴m=-2,
故m+n∈$({-2,-\frac{7}{4}})$,
故答案為:$({-2,-\frac{7}{4}})$

點(diǎn)評 本題考查的知識點(diǎn)是函數(shù)的圖象,方程根的個數(shù),數(shù)形結(jié)合思想,二次函數(shù)的圖象和性質(zhì),難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=$\frac{x+1}{2x-1}$,數(shù)列{an}的前n項和為Sn,且an=f($\frac{n}{2017}$),則S2017=( 。
A.1008B.1010C.$\frac{2019}{2}$D.2019

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,為了測量對岸A,B兩點(diǎn)的距離,沿河岸選取C,D兩點(diǎn),測得CD=2km,∠CDB=∠ADB=30°,∠ACD=60°,∠ACB=45°,求A,B兩點(diǎn)的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC 中,角A,B,C 所對的邊分別為a,b,c,已知bsinA=$\sqrt{3}$acosB.
(1)求角B 的值;
(2)若cosAsinC=$\frac{{\sqrt{3}-1}}{4}$,求角A的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)f(x)=($\frac{1}{2}$)${\;}^{-{x}^{2}+6x-2}$的單調(diào)增區(qū)間為(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知二次函數(shù)f(x)=ax2+bx+3在x=2時取得最小值,且函數(shù)f(x)的圖象在x軸上截得的線段長為2.
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)g(x)=f(x)-mx的一個零點(diǎn)在區(qū)間(0,2)上,另一個零點(diǎn)在區(qū)間(2,3)上,求實數(shù)m的取值范圍.
(3)當(dāng)x∈[t,t+1]時,函數(shù)f(x)的最小值為-$\frac{1}{2}$,求實數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知tan(α+$\frac{π}{4}$)=3,tanβ=2,則tan(α-β)=-$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線畫出的是某多面體的三視圖,則該多面體的表面積為(  )
A.60B.72C.81D.114

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合A={2,4,6},B={1,3,4,5}.則A∩B=( 。
A.{2,4,6}B.{1,3,5}C.{4,5}D.{4}

查看答案和解析>>

同步練習(xí)冊答案