到兩點(diǎn)F1(-3,0)、F2(3,0)的距離之和為10的點(diǎn)的軌跡方程是
 
(寫成標(biāo)準(zhǔn)形式).
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程,橢圓的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:由橢圓定義可得,動點(diǎn)的軌跡為以F1(-3,0)、F2(3,0)為焦點(diǎn),且長軸為10的橢圓,且得到橢圓的長半軸和半焦距,求出橢圓的短半軸長,代入橢圓標(biāo)準(zhǔn)方程得答案.
解答: 解:由題意可得動點(diǎn)的軌跡為以F1(-3,0)、F2(3,0)為焦點(diǎn),且長軸為10的橢圓,
∴c=3,2a=10,a=5.
則b2=a2-c2=25-9=16.
動點(diǎn)的軌跡方程為
x2
25
+
y2
16
=1

故答案為:
x2
25
+
y2
16
=1
點(diǎn)評:本題考查了橢圓的定義,考查了橢圓的標(biāo)準(zhǔn)方程,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一條光線從點(diǎn)A(-4,-2)射出,到直線y=x上的B點(diǎn)后被直線y=x反射到y(tǒng)軸上的C點(diǎn),又被y軸反射,這時反射光線恰好過點(diǎn)D(-1,6).求BC所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若兩直線y=x+2k與y=2x+k+1的交點(diǎn)在圓x2+y2=4上,則k的值是( 。
A、-
1
5
或-1
B、-
1
5
或1
C、-
1
3
或1
D、-2或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=a,a2=t(常數(shù)t>0),Sn是其前n項(xiàng)和,且Sn=
n(an-a1)
2

(I)試確定數(shù)列{an}是否為等差數(shù)列,若是,求出其通項(xiàng)公式;若不是,說明理由;
(Ⅱ)令bn=
Sn+2
Sn+1
+
Sn+1
Sn+2
,證明:2n<b1+b2+…+bn<2n+3(n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x),(x∈R+),滿足f(3x)=3f(x).若f(x)=1-|x-2|(1≤x≤3),試計(jì)算:
(1)f(99)=
 
;
(2)集合M={x|f(x)=f(99)}中最小的元素是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=
a-1
x
為[1,3]增函數(shù),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若¬p∨q是真命題,p為真命題,則q為命題
 
(填真或假).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域?yàn)镽,若f(x+1)、f(x-1)都是奇函數(shù),則(  )
A、f(x)是奇函數(shù)
B、f(x)是偶函數(shù)
C、f(x+5)是偶函數(shù)
D、f(x+7)是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,偶函數(shù)是( 。
A、y=x3
B、y=x2
C、y=x-3
D、y=x
1
3

查看答案和解析>>

同步練習(xí)冊答案