過點(diǎn)(-1,1)作直線與圓x2+y2=4相交,則所得弦的長度最短時(shí),直線方程為
 
分析:當(dāng)所得弦的長度最短時(shí),直線的斜率為
-1
1-0
-1-0
=1,用點(diǎn)斜式求得直線方程.
解答:解:圓x2+y2=4 的圓心A(0,0 ),所得弦的長度最短時(shí),直線的斜率為
-1
1-0
-1-0
=1,
故直線的方程為 y-1=1(x+1),即x-y+2=0,
故答案為x-y+2=0.
點(diǎn)評(píng):本題考查用點(diǎn)斜式求直線方程的方法,求出弦的長度最短時(shí)直線的斜率為
-1
1-0
-1-0
=1,是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖梯形ABCD,AD∥BC,∠A=90°,過點(diǎn)C作CE∥AB,AD=2BC,AB=BC,,現(xiàn)將梯形沿CE折成直二面角D-EC-AB.
(1)求直線BD與平面ABCE所成角的正切值;
(2)設(shè)線段AB的中點(diǎn)為P,在直線DE上是否存在一點(diǎn)M,使得PM∥面BCD?若存在,請(qǐng)指出點(diǎn)M的位置,并證明你的結(jié)論;若不存在,請(qǐng)說明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直三棱柱ABC-A′B′C′中,點(diǎn)D是BC的中點(diǎn),∠ACB=90°,AC=BC=1,AA′=2,
(1)欲過點(diǎn)A′作一截面與平面AC'D平行,問應(yīng)當(dāng)怎樣畫線,寫出作法,并說明理由;
(2)求異面直線BA′與 C′D所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(廣東卷理20)如圖5所示,四棱錐的底面是半徑為的圓的內(nèi)接四邊形,其中是圓的直徑,,

直底面,,分別是上的點(diǎn),且

,過點(diǎn)的平行線交

(1)求與平面所成角的正弦值;

(2)證明:是直角三角形;

(3)當(dāng)時(shí),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(廣東卷理20)如圖5所示,四棱錐的底面是半徑為的圓的內(nèi)接四邊形,其中是圓的直徑,,

直底面,,分別是上的點(diǎn),且

,過點(diǎn)的平行線交

(1)求與平面所成角的正弦值;

(2)證明:是直角三角形;

(3)當(dāng)時(shí),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆湖北省高三年級(jí)第一次質(zhì)量檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓:)上任意一點(diǎn)到兩焦點(diǎn)距離之和為,離心率為,左、右焦點(diǎn)分別為,點(diǎn)是右準(zhǔn)線上任意一點(diǎn),過作直  線的垂線交橢圓于點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)證明:直線與直線的斜率之積是定值;

(3)點(diǎn)的縱坐標(biāo)為3,過作動(dòng)直線與橢圓交于兩個(gè)不同點(diǎn),在線段上取點(diǎn),滿足,試證明點(diǎn)恒在一定直線上.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案