15.設(shè)直線4x-3y+12=0的傾斜角為A
(1)求tan2A的值;
(2)求cos($\frac{π}{3}$-A)的值.

分析 (1)求出tanA,根據(jù)二倍角公式,求出tan2A的值即可;(2)根據(jù)同角的三角函數(shù)的關(guān)系分別求出sinA和cosA,代入兩角差的余弦公式計(jì)算即可.

解答 解:(1)由4x-3y+12=0,
得:k=$\frac{4}{3}$,則tanA=$\frac{4}{3}$,
∴tan2A=$\frac{2×\frac{4}{3}}{1{-(\frac{4}{3})}^{2}}$=-$\frac{24}{7}$;
(2)由$\left\{\begin{array}{l}{tanA=\frac{sinA}{cosA}=\frac{4}{3}}\\{{sin}^{2}A{+cos}^{2}A=1}\end{array}\right.$,以及0<A<π,
得:sinA=$\frac{4}{5}$,cosA=$\frac{3}{5}$,
cos($\frac{π}{3}$-A)=cos$\frac{π}{3}$cosA+sin$\frac{π}{3}$sinA=$\frac{1}{2}$×$\frac{3}{5}$+$\frac{\sqrt{3}}{2}$×$\frac{4}{5}$=$\frac{3+4\sqrt{3}}{10}$.

點(diǎn)評 本題考查了二倍角公式,兩角差的余弦公式,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知x>0,y>0,且2x+y=xy.則x+2y的最小值為( 。
A.5B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知雙曲線C1:$\frac{y^2}{m+3}$-$\frac{x^2}{m}$=1(m>0)與雙曲線C2:$\frac{x^2}{4}$-$\frac{y^2}{16}$=1有相同的漸近線,則兩個(gè)雙曲線的四個(gè)焦點(diǎn)構(gòu)成的四邊形面積為( 。
A.10B.20C.10$\sqrt{5}$D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)f(x)=$\sqrt{3}$sinx+cosx在x∈R上的最小值等于-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知$\overrightarrow{a}$=(1,2),$\overrightarrow$=(0,1),$\overrightarrow{c}$=(k,-2),若($\overrightarrow{a}$+$\overrightarrow{2b}$)∥$\overrightarrow{c}$,則k=( 。
A.-8B.2C.-$\frac{1}{2}$D.-$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知直線l1為曲線y=f(x)=x2+x-2在點(diǎn)(1,0)處的切線,l2為該曲線的另外一條切線,且l1⊥l2,求直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.為了促進(jìn)人口的均衡發(fā)展,我國從2016年1月1日起,全國統(tǒng)一實(shí)施全面放開二孩政策.為了解適齡民眾對放開生育二孩政策的態(tài)度,某部門選取70后和80后年齡段的人作為調(diào)查對象,進(jìn)行了問卷調(diào)查.其中,持“支持生二孩”“不支持生二孩”和“保留意見”態(tài)度的人數(shù)如下表所示:
支持生二孩不支持生二孩保留意見
80后380200420
70后120300180
(1)根據(jù)統(tǒng)計(jì)表計(jì)算并說明,能否有99.9%的把握認(rèn)為“支持生二孩”與“不支持生二孩”與年齡段有關(guān)?
(2)在統(tǒng)計(jì)表中持“不支持生二孩”態(tài)度的人中,用分層抽樣的方法抽取5人,并將其看成一個(gè)總體,從這5人中任意選取2人,求至少有1個(gè)80后的概率.
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.用分析法證明2$\sqrt{2}$+$\sqrt{5}$<$\sqrt{7}$+$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若A={(x,y)|y=2x+3},B={(x,y)|y=x2},則A∩B={(-1,1),(3,9)}.

查看答案和解析>>

同步練習(xí)冊答案