6.已知某幾何體的三視圖如圖所示,其中俯視圖是正三角形,則該幾何體的體積為( 。
A.$\sqrt{3}$B.2$\sqrt{3}$C.3$\sqrt{3}$D.4$\sqrt{3}$

分析 由三視圖可知:該幾何體是由一個三棱柱截去一個四棱錐(底面在側(cè)面上)剩下的幾何體.

解答 解:由三視圖可知:該幾何體是由一個三棱柱截去一個四棱錐(底面在側(cè)面上)剩下的幾何體.
∴該幾何體的體積=$\frac{\sqrt{3}}{4}$×22×3-$\frac{1}{3}×\frac{1+2}{2}×2×\sqrt{3}$
=2$\sqrt{3}$.
故選:B.

點評 本題考查了三視圖的有關(guān)計算、三棱柱與四棱錐的體積計算公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)等差數(shù)列{an}的前n項和為Sn,若$\frac{{S}_{2016}}{2016}$-S1=2015,則數(shù)列{an}的公差為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,平面PCD⊥底面ABCD,PD⊥CD,PD=CD,E為PC的中點.
(I)求證:AC⊥PB;
(Ⅱ)求二面角P-BD-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在三棱柱ABC-A1B1C1中,已知BC=1,BB1=2,AB=$\sqrt{2}$,∠BCC1=90°,AB⊥側(cè)面BB1C1C,E為CC1的中點
(1)求證:EA⊥EB1
(2)求二面角A-EB1-A1的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在三棱錐P-ABC中,PA⊥平面ABC,AB⊥AC,PA=AC=3,BE=$\frac{1}{2}$EC,AD=2DC,AE=$\sqrt{2}$.
(1)證明:DE⊥平面PAE;
(2)求二面角A-PE-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某中學(xué)共有4400名學(xué)生,其中男生共有2400名,女生2000名,為了解學(xué)生的數(shù)學(xué)基礎(chǔ)的差異,采用分層抽樣的辦法從全體學(xué)生中選取55名同學(xué)進(jìn)行試卷成績調(diào)查,得到男生試卷成績的頻率分布直方圖和女生試卷成績的頻數(shù)分布表.
女生試卷成績的頻數(shù)分布表
 成績分組[75,90)[90,105)[105,120)[120,135)[135,150)
 頻數(shù) 2 6 8 7 b
(1)計算a,b的值,以分組的中點數(shù)據(jù)為平均數(shù),分別估計該校男生和女生的數(shù)學(xué)成績;
(2)若規(guī)定成績在[120,150]內(nèi)為數(shù)學(xué)基礎(chǔ)優(yōu)秀,由以上統(tǒng)計數(shù)據(jù)填寫下面的2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為男女生的數(shù)學(xué)基礎(chǔ)有差異.
  男生 女生 總計
 優(yōu)秀   
 不優(yōu)秀   
 總計   
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
臨界值表:
P(K2≥k00.100.050.01
K02.7063.8416,635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖,邊長為4的正方形ABED的對邊AB、ED的中點為C、F,將此正方形沿著CF折成120°的二面角,連AB、DE得一直三棱柱,則此三棱柱外接球的表面積等于(  )
A.16πB.32πC.D.64π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某課題組對全班45名同學(xué)的飲食習(xí)慣進(jìn)行了一次調(diào)查,并用莖葉圖表示45名同學(xué)的飲食指數(shù).說明:如圖中飲食指數(shù)低于70的人被認(rèn)為喜食蔬菜,飲食指數(shù)不低于70的人被認(rèn)為喜食肉類
(1)根據(jù)莖葉圖,完成下面2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為喜食蔬菜還是喜食肉類與性別有關(guān),說明理由:
喜食蔬菜喜食肉類合計
男同學(xué)
女同學(xué)
合計
(2)根據(jù)飲食指數(shù)在[10,39],[40,69],[70,99]進(jìn)行分層抽樣,從全班同學(xué)中抽取15名同學(xué)進(jìn)一步調(diào)查,記抽取到的喜食肉類的女同學(xué)為ξ,求ξ的分布列和數(shù)學(xué)期望Eξ
下面公式及臨界值表僅供參考:附:X2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$

P(K2≥k)0.1000.050.010
k2.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.幾何體EFG-ABCD的面ABCD,ADGE,DCFG均為矩形,AD=DC=1,AE=$\sqrt{2}$.
(Ⅰ)求證:EF⊥平面GDB;
(Ⅱ)線段DG上是否存在點M使直線BM與平面BEF所成的角為45°?若存在,求$\frac{DM}{DG}$的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案