1(本小題滿分12分)

2008年為山東素質(zhì)教育年,為響應(yīng)素質(zhì)教育的實施,某中學(xué)號召學(xué)生在放假期間至少參加一次社會實踐活動(以下簡稱活動).現(xiàn)統(tǒng)計了該校100名學(xué)生參加活動的情況,他們參加活動的次數(shù)統(tǒng)計如圖所示.

(1)求這些學(xué)生參加活動的人均次數(shù);

(2)從這些學(xué)生中任選兩名學(xué)生,求他們參加活動次數(shù)恰好相等的概率;

(3)從這些學(xué)生中任選兩名學(xué)生,用表示這兩人參加活動次數(shù)之差的絕對值,求隨機變量的分布列及數(shù)學(xué)期望

(1)2.1  


解析:

由圖可知,參加活動1次、2次和3次的學(xué)生人數(shù)分別為20、50和30.

(1)這些學(xué)生參加活動的人均次數(shù)為: 

(2)從這些學(xué)生中任選兩名學(xué)生,他們參加活動次數(shù)恰好相等的概率為

   

(3)從這些學(xué)生中任選兩名學(xué)生,記“這兩人中一人參加1次活動,另一人參加2次活動”為事件A,“這兩人中一人參加2次活動,另一人參加3次活動”為事件B,“這兩人中一人參加1次活動,另一人參加3次活動”為事件C,易知

 

   的分布列

0

1

2

P

 的數(shù)學(xué)期望:          

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011屆海南省海口市高三高考調(diào)研考試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿分12分)
某市為了對學(xué)生的數(shù)理(數(shù)學(xué)與物理)學(xué)習(xí)能力進行分析,從10000名學(xué)生中隨機抽出100位學(xué)生的數(shù)理綜合學(xué)習(xí)能力等級分?jǐn)?shù)(6分制)作為樣本,分?jǐn)?shù)頻數(shù)分布如下表:

等級得分






人數(shù)
3
17
30
30
17
3
(Ⅰ)如果以能力等級分?jǐn)?shù)大于4分作為良好的標(biāo)準(zhǔn),從樣本中任意抽。裁麑W(xué)生,求恰有1名學(xué)生為良好的概率;
(Ⅱ)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值(例如區(qū)間的中點值為1.5)作為代表:
(ⅰ)據(jù)此,計算這100名學(xué)生數(shù)理學(xué)習(xí)能力等級分?jǐn)?shù)的期望及標(biāo)準(zhǔn)差(精確到0.1);
(ⅱ) 若總體服從正態(tài)分布,以樣本估計總體,估計該市這10000名學(xué)生中數(shù)理學(xué)習(xí)能力等級在范圍內(nèi)的人數(shù) .
(Ⅲ)從這10000名學(xué)生中任意抽取5名同學(xué),
他們數(shù)學(xué)與物理單科學(xué)習(xí)能力等級分
數(shù)如下表:

(ⅰ)請畫出上表數(shù)據(jù)的散點圖;
(ⅱ)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程(附參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年河北省邯鄲市高三第二次數(shù)學(xué)文科試題 題型:解答題

(本小題滿分12分)
將一個各個面上均涂有顏色的正方體鋸成27個同樣大小的小正方體
(Ⅰ)從這些小正方體中任取1個,求其中至少有兩面涂有顏色的概率;
(Ⅱ)從中任。矀小正方體,求2個小正方體涂上顏色的面數(shù)之和為4的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年河北省邯鄲市高三第二次數(shù)學(xué)理科試題 題型:解答題

(本小題滿分12分)

將一個各個面上均涂有顏色的正方體鋸成27個同樣大小的小正方體.

(Ⅰ)從這些小正方體中任。眰,求其中至少有兩面涂有顏色的概率;

(Ⅱ)從中任。矀小正方體,記2個小正方體涂上顏色的面數(shù)之和為.求的分布列和數(shù)學(xué)期望.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年四川省成都市高二3月月考數(shù)學(xué)試卷 題型:填空題

(本小題滿分12 分)

已知正方體,是底對角線的交點.

求證:(1)∥面; 

(2)

 

查看答案和解析>>

同步練習(xí)冊答案