函數(shù)f(x)=(x≤1)的反函數(shù)是( )
A.f-1(x)=x2+1(x≥0)
B.f-1(x)=-x2+1(x≥0)
C.f-1(x)=x2+1(x≥1)
D.f-1(x)=-x2+1(x≥1)
【答案】分析:由已知函數(shù)f(x)=(x≤1),我們選用y表示x,則可能得到函數(shù)f(x)=(x≤1)的反函數(shù)的解析式,然后根據(jù)互為反函數(shù)的兩個函數(shù)定義域和值域對調,求出反函數(shù)的定義域,即可得到答案.
解答:解:由已知中函數(shù)f(x)=(x≤1)
我們易得函數(shù)的值域為[0,+∞)
令y
則y2=1-x
則x=1-y2,
即函數(shù)f(x)=(x≤1)的反函數(shù)是f-1(x)=-x2+1(x≥0)
故選B
點評:本題考查的知識點是反函數(shù),求反函數(shù)的步驟是:一、反表示;二、互換x,y;三、確定反函數(shù)的定義域(即原函數(shù)的值域.)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義域為R的函數(shù)f(x)滿足條件:
[f(x1)-f(x2)](x1-x2)>0,(x1,x2R+,x1x2);
②f(x)+f(-x)=0(x∈R); 
③f(-3)=0.
則不等式x•f(x)<0的解集是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3-2x2-4x-7.
(Ⅰ)求函數(shù)f(x)的單調區(qū)間;
(Ⅱ)求a>2時,證明:對于任意的x>2且x≠a,恒有f(x)>f(a)+f'(a)(x-a);
(Ⅲ)設x0是函數(shù)y=f(x)的零點,實數(shù)α滿足f(α)>0,β=α-
f(α)f′(α)
,試探究實數(shù)α、β、x0的大小關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<
π
2
)的振幅為
2
,周期為π,且圖象關于直線x=
π
8
對稱.
(Ⅰ)求f(x)的解析式;
(Ⅱ)將函數(shù)y=sinx的圖象作怎樣的變換可以得到f(x)的圖象?

查看答案和解析>>

科目:高中數(shù)學 來源:徐州模擬 題型:解答題

設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案