17.已知函數(shù)y=f(x)定義在R上的奇函數(shù),且當(dāng)x≥0時,f(x)=x2-3x+b,則f(-2)=(  )
A.-2B.2C.10D.-10

分析 利用奇函數(shù)的性質(zhì),首先由f(0)=0得到b,然后利用f(-2)=-f(2),求f(2)的值.

解答 解:因為函數(shù)y=f(x)定義在R上的奇函數(shù),且當(dāng)x≥0時,f(x)=x2-3x+b,
所以f(0)=0即b=0,
所以當(dāng)x≥0時,f(x)=x2-3x,所以f(2)=22-3×2=-2,
所以f(-2)=-f(2)=2;
故選B:

點評 本題考查了函數(shù)奇偶性的定義運用;注意:奇函數(shù)在x=0有意義,則f(0)=0.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知集合A={x|1≤x≤2},B={x|x<a},若A∩B=A,則實數(shù)a的取值范圍是a≥2,若A∩B=∅,則a的范圍為a≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)全集 U={1,2,3,4,5},集合 A={1,2,3},B={2,5},則(CuA)∩(CuB)={4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=loga(ax-1)( a>0,a≠1 )
(1)討論函數(shù)f(x)的定義域;
(2)當(dāng)a>1時,解關(guān)于x的不等式:f(x)<f(1);
(3)當(dāng)a=2時,不等式f(x)-log2(1+2x)>m對任意實數(shù)x∈[1,3]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.圓x2+y2-4x+6y-12=0上的點到直線3x+4y+k=0的距離的最小值大于2,則實數(shù)k的取值范圍是k<-29或k>41.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知A是△ABC的一個內(nèi)角,sinA+cosA=$\frac{1}{5}$,則sinAcosA=-$\frac{12}{25}$,tanA=-$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)=|t(x+$\frac{4}{x}$)-5|,其中常數(shù)t>0.
(Ⅰ)若函數(shù)f(x)分別在區(qū)間(0,2),(2,+∞)上單調(diào),試求實數(shù)t的取值范圍;
(Ⅱ)當(dāng)t=1時,方程f(x)=m有四個不相等的實根x1,x2,x3,x4
①求四根之積x1x2x3x4的值;
②在[1,4]上是否存在實數(shù)a,b(a<b),使得f(x)在[a,b]上單調(diào)且取值范圍為[ma,mb]?若存在,求出m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖所示,墻上掛有邊長為a的正方形木板,它的四個角的陰影部分都是以正方形的頂點為圓心,半徑為$\frac{a}{2}$的圓。橙讼虼税逋剁S,假設(shè)每次都能擊中木板,且擊中木板上每個點的可能性都相等,此人投鏢4000次,鏢擊中空白部分的次數(shù)是854次.據(jù)此估算:圓周率π約為3.146.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在極坐標(biāo)系中,極點為O,點A的極坐標(biāo)為(2,$\frac{π}{6}$),以O(shè)A為斜邊作等腰直角三角形OAB(其中O,A,B按逆時針方向分布)
(1)求點B的極坐標(biāo);
(2)求三角形外接圓的極坐標(biāo)方程.

查看答案和解析>>

同步練習(xí)冊答案