設(shè)函數(shù)的圖像與直線相切于點(diǎn).
(1)求的值;
(2)討論函數(shù)的單調(diào)性.

(1) (2)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,.

解析試題分析:(1)先求出,結(jié)合題中所給的切線與切點(diǎn)可得方程組,從而求解方程組即可得到的值;(2)由(1)中所求得的,確定,從而由,可求出函數(shù)的單調(diào)增區(qū)間,由,可求出函數(shù)的單調(diào)減區(qū)間.
試題解析:(1) 求導(dǎo)得,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/53/1/1bpx53.png" style="vertical-align:middle;" />的圖像與直線相切于點(diǎn)
所以有 即 解得
(2)由 
當(dāng)時,的單調(diào)遞增區(qū)間為,
當(dāng)時,的單調(diào)遞減區(qū)間為.
考點(diǎn):1.導(dǎo)數(shù)的幾何意義;2.函數(shù)的單調(diào)性與導(dǎo)數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)當(dāng)時,求函數(shù)在點(diǎn)(1,1)處的切線方程;
(2)若在y軸的左側(cè),函數(shù)的圖象恒在的導(dǎo)函數(shù)圖象的上方,求k的取值范圍;
(3)當(dāng)k≤-l時,求函數(shù)在[k,l]上的最小值m。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知為函數(shù)圖象上一點(diǎn),O為坐標(biāo)原點(diǎn),記直線的斜率
(1)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)m的取值范圍;
(2)設(shè),若對任意恒有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)當(dāng)時,求證:恒成立..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中.
(1)若,求函數(shù)的極值點(diǎn);
(2)若在區(qū)間內(nèi)單調(diào)遞增,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知
(1)若,求曲線在點(diǎn)處的切線方程;
(2)若 求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=2ax--(2+a)lnx(a≥0).
(1)當(dāng)a=0時,求f(x)的極值;
(2)當(dāng)a>0時,討論f(x)的單調(diào)性;
(3)若對任意的a∈(2,3),x­1,x2∈[1,3],恒有(m-ln3)a-2ln3>|f(x1)-f(x­2)|成立,求實(shí)數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如右圖,由曲線與直線,所圍成平面圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),,,
(1)若曲線軸相切于異于原點(diǎn)的一點(diǎn),且函數(shù)的極小值為,求的值;
(2)若,且,
①求證:; ②求證:上存在極值點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案