分析 (I)高三男生的平均身高用組中值×頻率,即可得到結(jié)論;
(II)首先理解頻數(shù)分布直方圖橫縱軸表示的意義,橫軸表示身高,縱軸表示頻數(shù),即:每組中包含個體的個數(shù).我們可以依據(jù)頻數(shù)分布直方圖,了解數(shù)據(jù)的分布情況,知道每段所占的比例,從而求出求這50名男生身高在172cm以上(含172cm)的人數(shù).
(III)先根據(jù)正態(tài)分布的規(guī)律求出全市前130名的身高在180 cm以上,這50人中180 cm以上的有2人,確定ξ的可能取值,求出其概率,即可得到ξ的分布列與期望.
解答 (本題滿分為12分)
解:(Ⅰ)由直方圖,經(jīng)過計算該校高三年級男生平均身高為:(162×$\frac{5}{100}$+166×$\frac{7}{100}+170×\frac{8}{100}+174×\frac{2}{100}+178×$$\frac{2}{100}$+182×$\frac{1}{100}$)×4=168.72.
高于全市的平均值168(或者:經(jīng)過計算該校高三年級男生平均身高為168.72,比較接近全市的平均值168).…(4分)
(Ⅱ)由頻率分布直方圖知,后三組頻率為(0.02+0.02+0.01)×4=0.2,人數(shù)為0.2×5=10,
即這50名男生身高在172 cm以上(含172 cm)的人數(shù)為10人.…(6分)
(Ⅲ)∵P(168-3×4<ξ<168+3×4)=0.9974,
∴P(ξ≥180)=$\frac{1-0.9974}{2}$=0.0013,0.0013×100 000=130.
所以,全市前130名的身高在180 cm以上,這50人中180 cm以上的有2人.
隨機(jī)變量ξ可取0,1,2,于是:P(ξ=0)=$\frac{{C}_{8}^{2}}{{C}_{10}^{2}}$=$\frac{28}{45}$,P(ξ=1)=$\frac{{{C}_{8}^{1}C}_{2}^{1}}{{C}_{10}^{2}}$=$\frac{16}{45}$,P(ξ=2)=$\frac{{C}_{2}^{2}}{{C}_{10}^{2}}$=$\frac{1}{45}$,
∴Eξ=0×$\frac{28}{45}$+1×$\frac{16}{45}$+2×$\frac{1}{45}$=$\frac{2}{5}$.…(12分)
點評 此題主要考查了正態(tài)分布,考查隨機(jī)變量的定義及其分布列,并考查了利用分布列求其期望.正確理解頻數(shù)分布直方圖橫縱軸表示的意義,由頻數(shù)分布直方圖可以得到什么結(jié)論是學(xué)習(xí)中需要掌握的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-2,2] | B. | [-10,10] | C. | (-∞,-10]∪[10,+∞) | D. | (-∞,-2]∪[2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(-∞,\frac{1}{2})$ | B. | (-∞,0) | C. | $(0,\frac{1}{2})$ | D. | $(\frac{1}{2},+∞)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
運動時間 性別 | 運動達(dá)人 | 非運動達(dá)人 | 合計 |
男生 | 36 | ||
女生 | 26 | ||
合計 | 100 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com