已知曲線:,直線:(為參數(shù)).
(Ⅰ)寫出曲線的參數(shù)方程,直線的普通方程;
(Ⅱ)過曲線上任一點(diǎn)作與夾角為的直線,交于點(diǎn),求的最大值與最小值.
24. (本小題滿分10分)選修4—5:不等式選講
若,且.
(Ⅰ) 求的最小值;
(Ⅱ)是否存在,使得?并說明理由.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
是否存在一個(gè)等比數(shù)列同時(shí)滿足下列三個(gè)條件:①且;②;③至少存在一個(gè),使得依次構(gòu)成等差數(shù)列?若存在,求出通項(xiàng)公式;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測量表得如下頻數(shù)分布表:
質(zhì)量指標(biāo)值分組 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
頻數(shù) | 6 | 26 | 38 | 22 | 8 |
(I)在答題卡上作出這些數(shù)據(jù)的頻率分布直方圖:
(II)估計(jì)這種產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(III)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品學(xué)科網(wǎng)符合“質(zhì)量指標(biāo)值不低于95的產(chǎn)品至少要占全部產(chǎn)品的80%”的規(guī)定?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)=,若存在唯一的零點(diǎn),且>0,則的取值范圍為
.(2,+∞) .(-∞,-2) .(1,+∞) .(-∞,-1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
從某企業(yè)的某種產(chǎn)品中抽取500件,測量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測量結(jié)果得如下頻率分布直方圖:
(Ⅰ)求這500件產(chǎn)品質(zhì)量指標(biāo)值的樣本平均數(shù)和樣本方差(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表);
(Ⅱ)由頻率分布直方圖可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差.
(i)利用該正態(tài)分布,求;
(ii)某用戶從該企業(yè)購買了100件這種產(chǎn)品,學(xué)科網(wǎng)記表示這100件產(chǎn)品中質(zhì)量指標(biāo)值為于區(qū)間(187.8,212.2)的產(chǎn)品件數(shù),利用(i)的結(jié)果,求.
附:≈12.2.
若~,則=0.6826,=0.9544.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)是首項(xiàng)為,公差為的等差數(shù)列,為其前n項(xiàng)和,若成等比數(shù)列,則=( )
A.2 B.-2 C. D .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com