8.f(x)為奇函數(shù).當x>0時,f(x)=x2+x3,則當x<0時,f(x)為( 。
A.x2+x3B.-x2+x3C.x2-x3D.-x2-x3

分析 利用函數(shù)的奇偶性,真假求解函數(shù)的解析式即可.

解答 解:f(x)為奇函數(shù).f(-x)=-f(x),
當x>0時,f(x)=x2+x3,
當x<0時,f(x)=-f(-x)=-(x2-x3)=-x2+x3,
故選:B.

點評 本題考查函數(shù)的奇偶性的性質(zhì)的應(yīng)用,函數(shù)的解析式的求法,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)集合A={0,1,2,3,4},B=$\left\{{\left.{x∈R|\frac{x-4}{x-1}≤0}\right\}}\right.$,則A∩B=( 。
A.{1,2,3,4}B.{2,3,4}C.{3,4}D.{x|1<x≤4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.定義函數(shù)f(x)={x•{x}},其中{x}表示不小于x的最小整數(shù),如{1.2}=2,{-2.6}=-2.當x∈(0,n](n∈N*)時,函數(shù)f(x)的值域記為An,記An中元素的個數(shù)為an,則$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{10}}}}$=$\frac{20}{11}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知θ為△ABC的最小內(nèi)角,O為坐標原點,向量$\overrightarrow{OM}$=(1,sinθ),向量$\overrightarrow{ON}$=(cosθ,1),則△OMN的面積( 。
A.有最大值$\frac{1}{2}$B.有最小值$\frac{1}{2}$C.有最大值$\frac{1}{4}$D.有最小值$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=ax-a-x(a>0且a≠1).
(1)判斷函數(shù)f(x)的奇偶性;
(2)若a=2,當x∈[-1,1]時,f(x)≥m恒成立,求m的取值范圍.
【提示:第(1)問利用定義;第(2)問先確定f(x)的單調(diào)性,轉(zhuǎn)化為求f(x)的最值】

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)y=$\sqrt{1-x}$+$\frac{1}{x+1}$的定義域是( 。
A.(-∞,-1)∪(1,+∞)B.(-1,1)C.(-∞,-1)∪(-1,1]D.(-∞,-1)∪(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若2a=5b=10,則$\frac{a+b}{ab}$等于1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)數(shù)列{an}的前n項和為Sn,且a1=-1,an+1=Sn•Sn+1,則Sn=(  )
A.nB.$\frac{1}{n}$C.-nD.-$\frac{1}{n}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.曲線y=axcosx+16在x=$\frac{π}{2}$處的切線與直線y=x+1平行,則實數(shù)a的值為( 。
A.-$\frac{2}{π}$B.$\frac{2}{π}$C.$\frac{π}{2}$D.-$\frac{π}{2}$

查看答案和解析>>

同步練習(xí)冊答案