10.甲、乙兩所學(xué)校高三年級分別有600人,500人,為了解兩所學(xué)校全體高三年級學(xué)生在該地區(qū)五校聯(lián)考的數(shù)學(xué)成績情況,采用分層抽樣方法從兩所學(xué)校一共抽取了110名學(xué)生的數(shù)學(xué)成績,并作出了頻數(shù)分布統(tǒng)計表如下:
甲校:
 分組[70,80)[80,90)[90,100)[100,110)
 頻數(shù) 3 4 7 14
 分組[110,120)[120,130)[130,140)[140,150]
 頻數(shù) 17 4
乙校:
 分組[70,80)[80,90)[90,100)[100,110)
 頻數(shù) 1 2 8 9
 分組[110,120)[120,130)[130,140)[140,150]
 頻數(shù) 1010  y
(1)計算x,y的值;
(2)若規(guī)定考試成績在[120,150]內(nèi)為優(yōu)秀,由以上統(tǒng)計數(shù)據(jù)填寫下面的2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為兩所學(xué)校的數(shù)學(xué)成績有差異;
(3)若規(guī)定考試成績在[120,150]內(nèi)為優(yōu)秀,現(xiàn)從已抽取的110人中抽取兩人,要求每校抽1人,所抽的兩人中有人優(yōu)秀的條件下,求乙校被抽到的同學(xué)不是優(yōu)秀的概率.
 甲校 乙校 總計 
 優(yōu)秀   
 非優(yōu)秀   
 總計   
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(a+c)(c+d)(d+b)}$,其中n=a+b+c+d.
臨界值表:
 P(K2≥k0 0.100.05 0.010
 k0 2.706 3.8416.635 

分析 (1)根據(jù)條件知道從甲校和乙校各自抽取的人數(shù),做出頻率分布表中的未知數(shù);
(2)根據(jù)所給的條件寫出列聯(lián)表,根據(jù)列聯(lián)表做出觀測值,把觀測值同臨界值進(jìn)行比較,得到有90%的把握認(rèn)為兩個學(xué)校的數(shù)學(xué)成績有差異;
(3)設(shè)兩校各取一人,有人優(yōu)秀為事件A,乙校學(xué)生不優(yōu)秀為事件B,根據(jù)條件概率,可得結(jié)論.

解答 解:(1)從甲校抽取110×$\frac{600}{600+500}$=60(人),
從乙校抽取110×$\frac{500}{600+500}$=50(人),故x=9,y=6;
(2)表格填寫如下:

甲校乙校總計
優(yōu)秀152035
非優(yōu)秀453075
總計6050110
k2=$\frac{110×(15×30-20×45)^{2}}{60×50×35×75}=2.829>2.706$,
故有90%的把握認(rèn)為兩個學(xué)校的數(shù)學(xué)成績有差異;
(3)設(shè)兩校各取一人,有人優(yōu)秀為事件A,乙校學(xué)生不優(yōu)秀為事件B,根據(jù)條件概率,則所求事件的概率=$\frac{3}{11}$.

點評 本題主要考查獨立性檢驗的應(yīng)用,解題的關(guān)鍵是正確運算出觀測值,理解臨界值對應(yīng)的概率的意義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{16}$=1(a>0)的一條漸近線方程為y=$\frac{4}{3}$x,則該雙曲線的離心率為(  )
A.$\frac{4}{3}$B.$\frac{5}{3}$C.$\frac{5}{4}$D.$\frac{{\sqrt{7}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖,直三棱柱ABC-A1B1C1的六個頂點都在半徑為2的半球面上,AB=AC,側(cè)面BCC1B1是半球底面圓的內(nèi)接正方形,則側(cè)面ABB1A1的面積為(  )
A.$4\sqrt{2}$B.$2\sqrt{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.?dāng)?shù)列{an}滿足a1=$\frac{1}{4}$,an+1=$\frac{1}{4-4{a}_{n}}$,若不等式$\frac{{a}_{2}}{{a}_{1}}$+$\frac{{a}_{3}}{{a}_{2}}$+…+$\frac{{a}_{n+2}}{{a}_{n+1}}$<n+λ對任何正整數(shù)n恒成立,則實數(shù)λ的最小值為( 。
A.$\frac{3}{8}$B.$\frac{3}{4}$C.$\frac{7}{8}$D.$\frac{7}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.由代數(shù)式的乘法法則類比推導(dǎo)向量的數(shù)量積的運算法則( 。
①“mn=nm”類比得到“$\overrightarrow a•\overrightarrow b=\overrightarrow b•\overrightarrow a$”;
②“(m+n)t=mt+nt”類比得到“$(\overrightarrow a+\overrightarrow b)•\overrightarrow c=\overrightarrow a•\overrightarrow c+\overrightarrow b•\overrightarrow c$”;
③“(mn)t=m(nt)”類比得到“$(\overrightarrow a•\overrightarrow b)•\overrightarrow c=\overrightarrow a•(\overrightarrow b•\overrightarrow c)$”
④“t≠0,mt=nt⇒m=n”類比得到“$\overrightarrow c≠\overrightarrow 0,\overrightarrow a•\overrightarrow c=\overrightarrow b•\overrightarrow c⇒\overrightarrow a=\overrightarrow b$”;
以上的式子中,類比得到的結(jié)論正確的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知一個錐體挖去一個柱體后的三視圖如圖所示,網(wǎng)格上小正方形的邊長為1,則該幾何體的體積等于( 。
A.11πB.C.$\frac{11}{3}$πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知空間四面體ABCD中,AC=AD=BC=BD=2,且四面體ABCD的外接球的表面積為7π,如果AB=CD=a,則a=$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖,網(wǎng)格紙上正方形小格的邊長為1(表示1cm),圖中粗線畫出的是某零件的三視圖,則該幾何體的體積是(  )
A.5B.5.5C.6D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)x、y、z均為正數(shù),且3x=4y=6z
(1)試求x,y,z之間的關(guān)系;
(2)求使2x=py成立,且與p最近的正整數(shù)(即求與P的差的絕對值最小的正整數(shù));
(3)試比較3x、4y、6z的大。

查看答案和解析>>

同步練習(xí)冊答案