29、設(shè)函數(shù)f(x)=ex-m-x,其中m∈R.
(I)求函數(shù)f(x)的最值;
(II)給出定理:如果函數(shù)y=f(x)在區(qū)間[a,b]上連續(xù),并且有f(a)•f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),即存在x0∈(a,b),使得f(x0)=0.
運(yùn)用上述定理判斷,當(dāng)m>1時(shí),函數(shù)f(x)在區(qū)間(m,2m)內(nèi)是否存在零點(diǎn).
分析:(1)討論滿足f′(x)=0的點(diǎn)附近的導(dǎo)數(shù)的符號(hào)的變化情況,來確定極值,連續(xù)函數(shù)f(x)在區(qū)間(a,b)內(nèi)只有一個(gè)極值,那么極小值就是最小值;
(2)根據(jù)函數(shù)零點(diǎn)的判定定理,先分別求出x=m與x=2m的函數(shù)值,看函數(shù)值是否異號(hào),如果異號(hào),函數(shù)f(x)在區(qū)間(m,2m)內(nèi)存在零點(diǎn),否則不存在.
解答:解:(I)∵f(x)在(-∞,+∞)上連續(xù),f′(x)=ex-m-1,
令f′(x)=0,得x=m.(3分)當(dāng)x∈(-∞,m)時(shí),
ex-m<1,f′(x)<0;當(dāng)x∈(m,+∞)時(shí),ex-m>1,
f′(x)>0;所以,當(dāng)x=m時(shí),
f(x)取極小值也是最小值
∴f(x)min=f(m)=1-m(*)
由(*)知f(x)無最大值;(6分)
(II)函數(shù)f(x)在[m,2m]上連續(xù),
而f(2m)=em-2m,
令g(m)=em-2m.
則g′(m)=em-2
∵m>1∴g′(m)>e-2>0
∴g(m)在(1,+∞)上遞增.(8分)
由g(1)=e-2>0,
得g(m)>g(1)>0,
即f(2m)>0,(10分)
又f(m)=1-m<0,
∴f(m)•f(2m)<0,
根據(jù)定理,可判斷函數(shù)f(x)在區(qū)間(m,2m)上存在零點(diǎn).(12分)
點(diǎn)評(píng):本題主要考查了利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,以及函數(shù)零點(diǎn)的判定定理,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ex-1-x-ax2
(1)若a=0,求f(x)的單調(diào)區(qū)間;
(2)若當(dāng)x≥0時(shí)f(x)≥0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

18、設(shè)函數(shù)f(x)=ex[x2-(1+a)x+1](x∈R),
(I)若曲線y=f(x)在點(diǎn)P(0,f(0))處的切線與直線y=x+4平行.求a的值;
(II)求函數(shù)f(x)單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ex+aex(x∈R)是奇函數(shù),則實(shí)數(shù)a=
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ex
(I)求證:f(x)≥ex;
(II)記曲線y=f(x)在點(diǎn)P(t,f(t))(其中t<0)處的切線為l,若l與x軸、y軸所圍成的三角形面積為S,求S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ex(e為自然對(duì)數(shù)的底數(shù)),g(x)=x2-x,記h(x)=f(x)+g(x).
(1)h′(x)為h(x)的導(dǎo)函數(shù),判斷函數(shù)y=h′(x)的單調(diào)性,并加以證明;
(2)若函數(shù)y=|h(x)-a|-1=0有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案