命題“?x∈Z,x2+2x-3≤0”的否定是
 
考點:命題的否定
專題:簡易邏輯
分析:根據(jù)全稱命題的否定是特稱命題,寫出它的否定命題即可.
解答: 解:根據(jù)特稱命題的否定是全稱命題,得;
命題“?x∈Z,x2+2x-3≤0”的否定是
“?x∈Z,x2+2x-3>0”.
故答案為:“?x∈Z,x2+2x-3>0”.
點評:本題考查了全稱命題與特稱命題的應用問題,是基礎題目.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知集合A={y∈Z|y=log2x,
1
2
<x≤8},B={x|
x
x-2
≥0},則A∩B等于(  )
A、{0,3}
B、(-1,3]
C、{-1,0,1,2}
D、[-1,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-x2-3x+3a
(Ⅰ)求f(x)的單調遞增區(qū)間;
(Ⅱ)對任意的x∈[a,3a](a>0),f(x)≥0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知直角三角形ACB中,∠C=90°,D為AC上一點,且
AD
=2
DC
,∠ABD=30°,則cos∠ADB=( 。
A、-
2
2
B、-
1
2
C、-
3
2
D、-
2
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a(x+1)ln(x+1)圖象上的點[e2-1,f(e2-1)]處的切線的斜率是3,求:f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

三角形ABC中,b=5,c=3且滿足sin22A-sin2AsinA+cos2A=1,求cos(B-C)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(-1,0),B(0,1),點P(x,y)為直線y=x-1上的一個動點.
(1)求證:∠APB恒為銳角;
(2)若|
.
PA
|=|
.
PB
|,求向量
PB
+
PA
的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知cosθ=-
5
5
,θ∈(
π
2
,π)
(1)求tanθ的值;
(2)求tan2θ+
3sinθ-cosθ
2sinθ+cosθ
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,由函數(shù)f(x)=sinx與函數(shù)g(x)=cosx在區(qū)間[0,
2
]上的圖象所圍成的封閉圖形的面積為( 。
A、3
2
-1
B、4
2
-2
C、
2
D、2
2

查看答案和解析>>

同步練習冊答案