已知函數(shù)f(x)是定義在[-6,6]上的奇函數(shù),且f(x)在[0,3]上是x的一次函數(shù),在[3,6]上是x的二次函數(shù),且當3≤x≤6時,f(x)≤f(5)=3,f(6)=2,求f(x)的解析式.
【答案】分析:根據題意,分析可得(5,3)是[3,6]這段二次函數(shù)圖象的頂點,則設其解析式為f(x)=a(x-5)2+3,代入數(shù)據可得a=-1,即f(x)=-(x-5)2+3,進而由特殊值可得f(x)在[0,3]x的一次函數(shù)的解析式,再根據函數(shù)是奇函數(shù),由奇函數(shù)的性質,分析可得f(x)的解析式.
解答:解:∵f(x)在[3,6]上是x的二次函數(shù),且當3≤x≤6時,f(x)≤f(5)=3;
∴(5,3)是此二次函數(shù)圖象的頂點,設這個二次函數(shù)為f(x)=a(x-5)2+3.
∵f(6)=2;
∴a=-1.
∴f(x)=-(x-5)2+3(x∈[3,6]),
∴f(3)=-1.
又函數(shù)f(x)是定義在[-6,6]上的奇函數(shù);
∴f(0)=0.
∵f(x)在[0,3]上是x的一次函數(shù),且f(0)=0,f(3)=-1;

又∵函數(shù)f(x)是定義在[-6,6]上的奇函數(shù),
∴x∈[-3,0]時,;x∈[-6,-3]時,
f(x)=-f(-x)=-[-(-x-5)2+3}=(x+5)2-3.
綜上
點評:本題考查函數(shù)奇偶性的運用以及待定系數(shù)法求函數(shù)的解析式,涉及分段函數(shù)時,注意分段函數(shù),分段分析,分段討論的思想.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2x+2-x
2
,g(x)=
2x-2-x
2
,
(1)計算:[f(1)]2-[g(1)]2;
(2)證明:[f(x)]2-[g(x)]2是定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網已知函數(shù)f(x)=x+
a
x
的定義域為(0,+∞),且f(2)=2+
2
2
.設點P是函數(shù)圖象上的任意一點,過點P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求a的值.
(2)問:|PM|•|PN|是否為定值?若是,則求出該定值;若不是,請說明理由.
(3)設O為坐標原點,求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)
是f(x)圖象上的兩點,橫坐標為
1
2
的點P滿足2
OP
=
OM
+
ON
(O為坐標原點).
(Ⅰ)求證:y1+y2為定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn;
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn為數(shù)列{an}的前n項和,若Tn<m(Sn+1+1)對一切n∈N*都成立,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)是f(x)圖象上的兩點,且x1+x2=1.
(1)求證:y1+y2為定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)(n∈N*,N≥2),求Sn;
(3)在(2)的條件下,若an=
1
6
 ,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*),Tn為數(shù)列{an}的前n項和.求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直線y=m與兩個相鄰函數(shù)的交點為A,B,若m變化時,AB的長度是一個定值,則AB的值是( 。

查看答案和解析>>

同步練習冊答案